Massachusetts Technical Reference Manual

for Estimating Savings from Energy Efficiency Measures

2010 Program Year - Report Version

August 2011

nationalgrid

Table of Contents

TABLE OF CONTENTS	
INTRODUCTION	6
MEASURE CHARACTERIZATION STRUCTURE	7
IMPACT FACTORS FOR CALCULATING ADJUSTED GROSS AND NET SAVINGS	10
Types of Impact Factors	
Standard Net–to–Gross Formulas	
RESIDENTIAL ELECTRIC EFFICIENCY MEASURES	
Lighting – CFL Bulbs (Markdown)	
LIGHTING – CFL BULBS	
LIGHTING – CFL INDOOR FIXTURES	
Lighting – Outdoor Fixtures	
Lighting – Torchieres	
LIGHTING – LIGHT–EMITTING DIODE LIGHTS	
PROCESS – COMPUTER MONITORS	
PROCESS – DESKTOP COMPUTERS	
PROCESS – ROOM AIR CLEANER	
PROCESS – SMART STRIPS	
Process – Televisions	
REFRIGERATION – REFRIGERATORS (LOST OPPORTUNITY)	
REFRIGERATION – REFRIGERATORS (RETROFIT)	
Refrigeration – Freezers (Lost Opportunity)	
Refrigeration – Freezers (Retrofit)	
REFRIGERATION – REFRIGERATOR/FREEZER RECYCLING	
REFRIGERATION – APPLIANCE REMOVAL	
REFRIGERATION – BASIC EDUCATIONAL MEASURES	
HVAC – CENTRAL AIR CONDITIONING	
HVAC – AIR SOURCE HEAT PUMP	
HVAC – DUCTLESS MINI SPLIT HEAT PUMP	
HVAC – CENTRAL AC QUALITY INSTALLATION VERIFICATION (QIV)	
HVAC – HEAT PUMP QUALITY INSTALLATION VERIFICATION (QIV)	
HVAC – CENTRAL AC DIGITAL CHECK-UP/TUNE–UP	
HVAC – HEAT PUMP DIGITAL CHECK-UP/TUNE-UP	
HVAC – DUCT SEALING	
HVAC – DOWN SIZE ¹ /2 TON	
HVAC – RIGHT SIZING	
HVAC – EARLY REPLACEMENT OF CENTRAL AC OR HEAT PUMP UNIT	
HVAC – QUALITY INSTALLATION WITH DUCT SEALING	
HVAC – WARM AIR FURNACE ELECTRONICALLY COMMUTATED MOTOR (ECM)	
HVAC – BRUSHLESS FURNACE FAN MOTOR	
HVAC – ROOM AC (LOST OPPORTUNITY)	
HVAC – WINDOW AC REPLACEMENT (RETROFIT)	
HVAC – ELECTRIC WEATHERIZATION	
HVAC – OIL WEATHERIZATION	
HVAC – HEATING SYSTEM REPLACEMENT (OIL)	
HVAC/HOT WATER – ENERGY STAR® HOMES HEATING, COOLING, AND DHW MEASURES	
HOT WATER – DOMESTIC HOT WATER MEASURES (ELECTRIC)	
HOT WATER – DOMESTIC HOT WATER MEASURES (OIL AND GAS)	
HOT WATER – DISHWASHERS	

HOT WATER – POOL PUMP	
HOT WATER – WATERBED MATTRESS REPLACEMENT	
MASSSAVE – VENDOR MEASURES	
MULTIFAMILY – INSULATION (WALLS, ROOF, FLOOR)	
MULTIFAMILY – DHW (SHOWERHEADS AND AERATORS)	
MULTIFAMILY – DHW (TANK AND PIPE WRAP)	
MULTIFAMILY – THERMOSTATS	
MULTIFAMILY – HEAT PUMP TUNE-UP	115
Multifamily – Air Sealing	
Multifamily – Refrigerators and Freezers	
MultiFamily – Fixtures and CFLs	
BEHAVIOR – OPOWER ELECTRIC	
COMMERCIAL AND INDUSTRIAL ELECTRIC EFFICIENCY MEASURES	125
LIGHTING – ADVANCED LIGHTING DESIGN (PERFORMANCE LIGHTING)	
LIGHTING – LIGHTING SYSTEMS	
LIGHTING – LIGHTING CONTROLS	
LIGHTING – FREEZER/COOLER LEDS	
HVAC – SINGLE-PACKAGE AND SPLIT SYSTEM UNITARY AIR CONDITIONERS	
HVAC – SINGLE PACKAGE OR SPLIT SYSTEM HEAT PUMP SYSTEMS	
HVAC – DUAL ENTHALPY ECONOMIZER CONTROLS (DEEC)	
HVAC – DEMAND CONTROL VENTILATION (DCV)	
HVAC – ECM FAN MOTORS	
HVAC – ENERGY MANAGEMENT SYSTEM	
HVAC – HIGH EFFICIENCY CHILLER	
HVAC – HOTEL OCCUPANCY SENSORS	
HVAC – PROGRAMMABLE THERMOSTATS	
Refrigeration – Door Heater Controls	
REFRIGERATION – NOVELTY COOLER SHUTOFF	
REFRIGERATION – ECM EVAPORATOR FAN MOTORS FOR WALK–IN COOLERS AND FREEZERS	
REFRIGERATION – CASE MOTOR REPLACEMENT.	
REFRIGERATION – EVAPORATOR FAN CONTROLS	
Refrigeration – Vending Misers	
Compressed Air – High Efficiency Air Compressors	
Compressed Air – Refrigerated Air Dryers	
Motors/Drives – Premium Efficiency Motors	
Motors/Drives – Variable Frequency Drives	
Custom Measures	
RESIDENTIAL NATURAL GAS EFFICIENCY MEASURES	
HVAC – Boiler (Forced Hot Water)	
HVAC – BOILER (FORCED HOT WATER) HVAC – BOILER RESET CONTROLS (RETROFIT ONLY)	
HVAC – BOILER RESEI CONTROLS (RETROFTI ONLY) HVAC – EARLY REPLACEMENT BOILER	
HVAC – EARLY REPLACEMENT DOILER	
HVAC – PROGRAMMABLE THERMOSTATS	
HVAC – FURNACE (FORCED HOT AIR) WITH ECM	
HVAC – HEAT RECOVERY VENTILATOR	
HVAC – GAS HEATING SYSTEM REPLACEMENT (LOW INCOME)	
HVAC – GAS WEATHERIZATION (LOW INCOME)	
HVAC – GAS INSULATION.	
HVAC – Gas Air Sealing HVAC/Hot Water – Integrated Water Heater/Condensing Boiler	
HVAC/HOT WATER – INTEGRATED WATER HEATER/NON-CONDENSING BOILER	
HOT WATER – CONDENSING WATER HEATER.	
HOT WATER – INDIRECT WATER HEATER	
HOT WATER – TANKLESS WATER HEATERS	

BEHAVIOR – OPOWER GAS	
COMMERCIAL AND INDUSTRIAL NATURAL GAS EFFICIENCY MEASURES	219
HVAC – Programmable Thermostat	
HVAC – BOILER RESET CONTROLS (RETROFIT ONLY)	
HVAC – Condensing Unit Heater	
HVAC – GAS-FIRED LOW INTENSITY INFRARED HEATING	
HVAC – HIGH EFFICIENCY NATURAL GAS BOILER	
HVAC – HIGH EFFICIENCY NATURAL GAS WARM AIR FURNACE	
HVAC/HOT WATER – COMBINED HIGH EFFICIENCY BOILER AND WATER HEATER	
HOT WATER – CONDENSING STAND-ALONE WATER HEATER	
HOT WATER – PRE-RINSE SPRAY VALVE	
HOT WATER – REPAIR/REPLACE MALFUNCTIONING STEAM TRAP	
HOT WATER – LOW FLOW SHOWER HEADS	
HOT WATER – FAUCET AERATOR	
HOT WATER – HIGH EFFICIENCY INDIRECT WATER HEATER	
HOT WATER – HIGH EFFICIENCY TANKLESS WATER HEATER	
HOT WATER – HIGH EFFICIENCY FREE STANDING WATER HEATER	
FOOD SERVICE – COMMERCIAL GAS-FIRED OVEN	
FOOD SERVICE – COMMERCIAL GAS-FIRED GRIDDLE	
FOOD SERVICE – COMMERCIAL FRYER	
FOOD SERVICE – COMMERCIAL GAS-FIRED STEAMER	
CUSTOM MEASURES	
APPENDICES	
APPENDIX A: COMMON LOOKUP TABLES	
APPENDIX B: NET TO GROSS IMPACT FACTORS	
APPENDIX C: ACRONYMS	
Appendix D: Glossary	

Introduction

This *Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures* ("TRM") documents for regulatory agencies, customers, and other stakeholders how National Grid consistently, reliably, and transparently calculate savings from the installation of efficient equipment or the installation of efficient equipment, collectively called "measures," over the course of the 2010 program year. This reference manual provides methods, formulas and default assumptions for estimating energy, peak demand and other resource impacts from efficiency measures.

Within this TRM, efficiency measures are organized by the sector for which the measure is eligible and by the primary energy source associated with the measure. The two sectors are Residential and Commercial & Industrial ("C&I").¹ The primary energy sources addressed in this TRM are electricity and natural gas.

Each measure is presented in its own section as a "measure characterization." The measure characterizations provide mathematical equations for determining savings (algorithms), as well as default assumptions and sources, where applicable. In addition, any descriptions of calculation methods or baselines are provided as appropriate. The parameters for calculating savings are listed in the same order for each measure.

Algorithms are provided for estimating annual energy and peak demand impacts for primary and secondary energy sources if appropriate. In addition, algorithms or calculated results may be provided for other non-energy impacts (such as water savings or operation and maintenance cost savings). Data assumptions are based on Massachusetts PA data where available. Where Massachusetts-specific data is not available, assumptions may be based on , 1) manufacturer and industry data, 2) a combination of the best available data from jurisdictions in the same region, or 3) engineering judgment to develop credible and realistic factors.

¹ In this document, the Residential and Low Income programs are represented in a single "Residential" sector due to the degree of overlap in savings assumptions for similar measures in the standard income programs.

Measure Characterization Structure

This section describes the common entries or inputs that make up each measure characterization. A formatted template follows the descriptions of each section of the measure characterization.

Measure Name

A single device or behavior may be analyzed as a range of measures depending on a variety of factors which largely translate to where it is and who is using it. Such factors include hours of use, location, and baseline (equipment replaced or behavior modified). For example, the same screw-in compact fluorescent lamp will produce different savings if installed in an emergency room waiting area than if installed in a bedside lamp.

Measure Overview

This section will include a plain text description of the efficient and baseline technology and the benefit(s) of its installation, as well as subfields of supporting information including:

Description: <Description of the energy efficiency measure> Primary Energy Impact: <Electric or Natural Gas> Secondary Energy Impact: <e.g., Natural Gas, Propane, Oil, Electric, None> Non-Energy Impact: <e.g., Water Resource, O&M, Non-Resource, None> Sector: <Residential, Low Income or Commercial and Industrial> Market: <Lost Opportunity, Retrofit and/or Products and Services> End-Use: <Per PARIS database definition – see list below> Program: <Per PA definition>

The PARIS database includes the following possible End-Uses:

Lighting	Compressed Air	Demand Response
HVAC	Behavior	Photovoltaic Panels
Motors /Drives	Insulation	Process
Refrigeration	Combined Heat and Power	
Hot Water	Solar Hot Water	

Notes

This is an optional section for additional notes regarding anticipated changes going forward. For example, this section would not if there were upcoming statewide evaluations affecting the measure, or any plans for development of statewide tool for calculating measure savings.

Algorithms for Calculating Primary Energy Impacts

This section will describe the method for calculating the primary energy savings in appropriate units, i.e., kWh for electric energy savings or MMBtu for natural gas energy savings. The savings algorithm will be provided in a form similar to the following:

 $\Delta kWh = \Delta kW \times Hours$

Similarly, the method for calculating electric demand savings will be provided in a form similar to the following:

 $\Delta kW = (Watts_{BASE} - Watts_{EE})/1000$

Below the savings algorithms, a table contains the definitions (and, in some cases, default values) of each input in the equation(s). The inputs for a particular measure may vary and will be reflected as such in this table (see example below).

ΔkWh	=	gross annual kWh savings from the measure
ΔkW	=	gross connected kW savings from the measure
Hours	=	average hours of use per year
Watts _{BASE}	=	baseline connected kW
$Watts_{EE}$	=	energy efficient connected kW

Baseline Efficiency

This section will include a statement of the assumed equipment/operation efficiency in the absence of program intervention. Multiple baselines will be provided as needed, e.g., for different markets. Baselines may refer to reference tables or may be presented as a table for more complex measures.

High Efficiency

This section will describe the high efficiency case from which the energy and demand savings are determined. The high efficiency case may be based on specific details of the measure installation, minimum requirements for inclusion in the program, or an energy efficiency case based on historical participation. It may refer to tables within the measure characterization or in the appendices or efficiency standards set by organizations such as ENERGY STAR[®] and the Consortium for Energy Efficiency.

Hours

This section will note operating hours for equipment that is either on or off, or equivalent full load hours for technologies that operate at partial loads, or reduced hours for controls. Reference tables will be used as needed to avoid repetitive entries.

Measure Life

Measure Life includes equipment life and the effects of measure persistence. Equipment life is the number of years that a measure is installed and will operate until failure. Measure persistence takes into account business turnover, early retirement of installed equipment, and other reasons measures might be removed or discontinued.

Secondary Energy Impacts

This section described any secondary energy impacts associated with the energy efficiency measure, including all assumptions and the method of calculation.

Non-Energy Impacts

This section describes any non-energy impacts associated with the energy efficiency measure, including all assumptions and the method of calculation.

Impact Factors for Calculating Adjusted Gross Savings

The section includes a table of impact factor values for adjusting gross savings. Impact factors for calculating net savings (free ridership, spillover and/or net-to-gross ratio) are in Appendix B: Net to Gross Impact Factors. Further descriptions of the impacts factors and the sources on which they are based are described below the table.

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}

Abbreviated program names may be used in the above table. The mapping of full program names to abbreviated names is given below.

	Full Program Name	Abbreviation
Residential-	Residential New Construction & Major Renovation	RNC
Electric	Residential Cooling & Heating Equipment	RHVAC
	Multi-Family Retrofit	MF Retrofit
	MassSAVE	MassSAVE
	OPOWER	Behavior/Feedback
	ENERGY STAR Lighting	ES Lighting
	ENERGY STAR Appliances	ES Appliances
Low Income-	Low-Income Residential New Construction	LI RNC
Electric	Low-Income 1-4 Family Retrofit	LI Retrofit 1-4
	Low-Income MultiFamily Retrofit	LI MF Retrofit
C&I –	C&I New Construction and Major Renovation	NC
Electric	C&I Large Retrofit	Large Retrofit
	C&I Small Retrofit	Small Retrofit
Residential –	Residential – Residential New Construction & Major Renovation	
Gas	Residential Heating and Water Savings	Residential Heating and Water Savings
	MassSAVE	MassSAVE
	Multifamily Retrofit	MF Retrofit
	OPOWER Program	Behavior/Feedback
Low Income – Electric	Low-Income Single Family Retrofit	Low-Income Single Family Retrofit
C&I - Gas	C&I New Construction & Major Renovation	C&I NC
	C&I Retrofit	C&I Retrofit
	C&I Direct Install	C&I Direct Install

Impact Factors for Calculating Adjusted Gross and Net Savings

National Grid uses the algorithms in the Measure Characterization sections to calculate the gross savings for energy efficiency measures. Impact factors are then applied to make various adjustments to the gross savings estimate to account for the performance of individual measures or energy efficiency programs as a whole in achieving energy reductions as assessed through evaluation studies. Impacts factors address both the technical performance of energy efficiency measures and programs, accounting for the measured energy and demand reductions realized compared to the gross estimated reductions, as well as the programs' effect on the market for energy efficient products and services.

This section describes the types of impact factors used to make such adjustments, and how those impacts are applies to gross savings estimates. Definitions of the impact factors and other terms are also provided in the Glossary (see Appendix D: Glossary).

Types of Impact Factors

The impact factors used to adjust savings fall into one of two categories:

Impact factors used to adjust gross savings:

- In-Service Rate ("ISR")
- Savings Persistence Factor ("SPF")
- Realization Rate ("RR")
- Summer and Winter Peak Demand Coincidence Factors ("CF").

Impact factors used to calculate net savings:

- Free-Ridership ("FR") and Spillover ("SO") Rates
- Net-to-Gross Ratios ("NTG").

The **in-service rate** is the actual portion of efficient units that are installed. For example, efficient lamps may have an in-service rate less than 1.00 since some lamps are purchased as replacement units and are not immediately installed. The ISR is 1.00 for most measures.

The **savings persistence factor** is the portion of first-year energy or demand savings expected to persist over the life of the energy efficiency measure. The SPF is developed by conducting surveys of installed equipment several years after installation to determine the actual operational capability of the equipment. The SPF is 1.00 for most measures.

In contrast to savings persistence, *measure persistence* takes into account business turnover, early retirement of installed equipment, and other reasons the installed equipment might be removed or discontinued. Measure persistence is generally incorporated as part of the measure life, and therefore is not included as a separate impact factor.

The **realization rate** is used to adjust the gross savings (as calculated by the savings algorithms) based on impact evaluation studies. The realization rate is equal to the ratio of measure savings developed from an

impact evaluation to the estimated measure savings derived from the savings algorithms. The realization rate does not include the effects of any other impact factors. Depending on the impact evaluation study, there may be separate realization rates for energy (kWh), peak demand (kW), or fossil fuel energy (MMBtu).

A **coincidence factor** adjusts the connected load kW savings derived from the savings algorithm. A coincidence factor represents the fraction of the connected load reduction expected to occur at the same time as a particular system peak period. The coincidence factor includes both coincidence and diversity factors combined into one number, thus there is no need for a separate diversity factor in this TRM.

Coincidence factors are provided for the on-peak periods as defined by the ISO New England for the Forward Capacity Market ("FCM"), and are calculated consistently with the FCM methodology. Electric demand reduction during the ISO New England peak periods is defined as follows:

- <u>Summer On-Peak</u>: average demand reduction from 1:00-5:00 PM on non-holiday weekdays in June July, and August
- <u>Winter On-Peak</u>: average demand reduction from 5:00-7:00 PM on non-holiday weekdays in December and January

A **free-rider** is a customer who participates in an energy efficiency program (and gets an incentive) but who would have installed some or all of the same measure(s) on their own, with no change in timing of the installation, if the program had not been available. The **free-ridership rate** is the percentage of savings attributable to participants who would have installed the measures in the absence of program intervention.

The **spillover rate** is the percentage of savings attributable to a measure or program, but additional to the gross (tracked) savings of a program. Spillover includes the effects of 1) participants in the program who install additional energy efficient measures outside of the program as a result of participating in the program, and 2) non-participants who install or influence the installation of energy efficient measures as a result of being aware of the program. These two components are the **participant spillover** (SO_P) and **non-participant spillover** (SO_{NP}).

The **net savings** value is the final value of savings that is attributable to a measure or program. Net savings differs from gross savings because it includes the effects of the free-ridership and/or spillover rates.

The **net-to-gross** ratio is the ratio of net savings to the gross savings adjusted by any impact factors (i.e., the "adjusted" gross savings). Depending on the evaluation study, the NTG ratio may be determined from the free-ridership and spillover rates, if available, or it may be a distinct value with no separate specification of FR and SO values.

Standard Net-to-Gross Formulas

The TRM measure entries provide algorithms for calculating the gross savings for those efficiency measures. The following standard formulas show how the impact factors are applied to calculate the adjusted gross savings, which in turn are used to calculate the net savings. These are the calculations used by the PAs to track and report gross and net savings. The gross savings reported by the PAs are the unadjusted gross savings without the application of any impact factors.

Calculation of Net Annual Electric Energy Savings

 $adj_gross_kWh = gross_kWh \times RR_E \times SPF \times ISR$ net_kWh = $adj_gross_kWh \times NTG$

Calculation of Net Summer Electric Peak Demand Coincident kW Savings

 $\label{eq:spectrum} \begin{array}{l} adj_gross_kW_{SP} = gross_kW \times RR_{SP} \times SPF \times ISR \times CF_{SP} \\ net_kW_{SP} = adj_gross_kW_{SP} \times NTG \end{array}$

Calculation of Net Winter Electric Peak Demand Coincident kW Savings

 $adj_gross_kW_{WP} = gross_kW \times RR_{WP} \times SPF \times ISR \times CF_{WP}$ net_kW_{WP} = adj_gross_kW_{WP} \times NTG

Calculation of Net Annual Natural Gas Energy Savings

 $adj_gross_MMBtu = gross_MMBtu \times RR_E \times SPF \times ISR$ net_MMbtu = $adj_gross_MMBtu \times NTG$

Depending on the evaluation study methodology:

- NTG is equal to $(1 FR + SO_P + SO_{NP})$, or
- NTG is a single value with no distinction of FR, SO_P, SO_{NP}, and/or other factors that cannot be reliably isolated.

Where:

Gross_kWh	=	Gross Annual kWh Savings
adj_gross_kWh	=	Adjusted Gross Annual kWh Savings
net_kWh	=	Net Annual kWh Savings
Gross_kW _{SP}	=	Gross Connected kW Savings (summer peak)
adj_gross_kW _{SP}	=	Adjusted Gross Connected kW Savings (summer peak)
Gross_kW _{WP}	=	Gross Connected kW Savings (winter peak)
adj_gross_kW _{WP}	=	Adjusted Gross Connected kW Savings (summer peak)
net_kW _{SP}	=	Adjusted Gross Connected kW Savings (winter peak)
net_kW _{WP}	=	Net Coincident kW Savings (winter peak)
Gross_MMBtu	=	Gross Annual MMBtu Savings
adj_gross_MMBtu	=	Adjusted Gross Annual MMBtu Savings
net_MMBtu	=	Net Annual MMBtu Savings
SPF	=	Savings Persistence Factor
ISR	=	In-Service Rate

CF _{SP}	=	Peak Coincidence Factor (summer peak)
CF_{WP}	=	Peak Coincidence Factor (winter peak)
RR _E	=	Realization Rate for electric energy (kWh)
RR _{SP}	=	Realization Rate for summer peak kW
RR _{WP}	=	Realization Rate for winter peak kW
NTG	=	Net-to-Gross Ratio
FR	=	Free-Ridership Factor
SO _P	=	Participant Spillover Factor
SO _{NP}	=	Non-Participant Spillover Factor

Residential Electric Efficiency Measures

Lighting – CFL Bulbs (Markdown)

Measure Overview

Description: This measure covers the installation of ENERGY STAR® screw-in compact fluorescent lamps (CFLs) purchased through the PAs markdown programs. Compact fluorescent lamps offer comparable luminosity to incandescent lamps at significantly less wattage and significantly longer lamp lifetimes. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: One Time Non-Resource Sector: Residential Market: Lost Opportunity End Use: Lighting Program: ENERGY STAR Lighting

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms, which use averaged inputs:

 $\Delta kWh = \Delta kW \times Hours$ $\Delta kW = \Delta kW$

Where:

Unit	=	Rebated CFL Bulb Spiral
ΔkWh	=	Average annual kWh reduction: 47 kWh
ΔkW	=	Average annual kW reduction: 0.0457 kW ²
Hours	=	Average annual operating hours

Baseline Efficiency

The baseline efficiency case is an incandescent bulb.

High Efficiency

The high efficiency case is an ENERGY STAR® rated CFL spiral bulb.

Hours

Average annual operating hours are 1,022 hours/year (2.8 hours/day³ * 365 days/year).

Measure Life

The measure life is 7 years for markdown bulbs and 5 years for coupon bulbs.⁴

² Nexus Market Research (2009). *Residential Lighting Markdown Impact Evaluation*. Prepared for Markdown and Buydown Program Sponsors in CT, MA, RI, and VT; Page 56.

³ Ibid.

⁴ Nexus Market Research, Inc., RLW Analytics (2008). *Residential Lighting Measure Life Study*. Prepared for New England Residential Lighting Program Sponsors.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
One-Time Non-Resource	O&M Cost Impacts ⁵	\$3.00/Bulb

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Screw-in Bulbs	ES Lighting	0.42	1.00	1.00	1.00	1.00	0.11	0.22
Screw-in Bulbs (Hard to Reach)	ES Lighting	0.60	1.00	1.00	1.00	1.00	0.11	0.22
Screw-in Bulbs (School Fundraiser)	ES Lighting	0.50	1.00	1.00	1.00	1.00	0.11	0.22
Screw-in Bulbs (Specialty)	ES Lighting	0.60	1.00	1.00	1.00	1.00	0.11	0.22

In-Service Rates

In-service rates are based on Study 8, Evaluation of Residential Lighting Program, for Screw-in-Bulbs, hard to reach, and specialty measures.⁶ Note- these are NTG values shown here to remain consistent with the National Grid tracking system.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are 100% since savings estimates are based on evaluation results.

Coincidence Factors

Coincidence factors are from the 2009 Lighting Markdown Study.⁷

⁵ Massachusetts Electric Utilities (2003). *Non-Electric Benefit Performance Metrics – Residential 1*. Memo to Massachusetts non-Electric Parties.

⁶ NMR (2011). *Massachusetts ENERGY STAR* ® *Lighting Program: 2010 Annual Report.* Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council. Study 8 in the 2010 Massachusetts Electric Energy Efficiency Annual Report.

⁷ Nexus Market Research and RLW Analytics (2009). *Residential Lighting Markdown Impact Evaluation*. Prepared for Markdown and Buydown Program Sponsors in CT, MA, RI, and VT.

Lighting – CFL Bulbs

Measure Overview

Description: The installation of ENERGY STAR® screw-in compact fluorescent lamps (CFLs). Compact fluorescent lamps offer comparable luminosity to incandescent lamps at significantly less wattage and significantly longer lamp lifetimes.
Primary Energy Impact: Electric
Secondary Energy Impact: None
Non-Energy Impact: One Time O&M Cost Reduction, Low Income only: Annual Discounted Rate Cost Reduction
Sector: Residential, Low Income
Market: Lost Opportunity, Retrofit
End Use: Lighting
Program: Residential New Construction & Major Renovation, MassSAVE, Low-Income
Residential New Construction, Low-Income 1-4 Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the on the following algorithms and averaged inputs:

For Residential New Construction & Major Renovation, MassSAVE, and Low-Income Residential New Construction:

 $\Delta kWh = \Delta kW \times Hours$ $\Delta kW = \Delta kW$

Unit	=	Installed CFL bulb
ΔkWh		Average annual kWh reduction: 57 kWh
ΔkW	=	Average reduction in connected kW: 0.049 kW ⁸
Hours	=	Average annual operating hours

For Low-Income 1-4 Family Retrofit:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:

withere.		
Unit		histanea er E suis
ΔkWh	=	Average annual kWh savings per unit: 41 kWh ⁹
ΔkW		Max kW reduction: 0.011 kW ¹⁰

⁸ Nexus Market Research, Inc., RLW Analytics (2004). *Impact Evaluation of the MA, RI, and VT 2003 Residential Lighting Programs*. Submitted to The Cape Light Compact, State of Vermont Public Service Department for Efficiency Vermont, National Grid, Northeast Utilities, NSTAR, and Unitil Energy Systems, Inc.; Table 1-8.

⁹ Cadmus Group, Inc. (2009). Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program. Prepared for National Grid; Table 1, Page 5.

¹⁰ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

Baseline Efficiency

The baseline efficiency case is an incandescent bulb.

High Efficiency

The high efficiency case is an ENERGY STAR® qualified compact fluorescent light bulb that uses 75% less energy and lasts about 10 times longer than an incandescent bulb.

Hours

The annual operating hours are 1,168 hours/year (3.2 hours/day¹¹ * 365 days/year).

Measure Life

For Residential New Construction & Major Renovation, MassSAVE, and Low-Income Residential New Construction installations, the measure life is 7 years.¹²

For Low-Income 1-4 Family Retrofit installations the measure life is 9 years.¹³

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impact

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ¹⁴	\$(R1-R2)/kWh	Low Income
One-Time Non-Resource	O&M Cost Reduction ¹⁵	\$3/Bulb	

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Screw-in Bulbs	RNC, LI RNC	0.99	1.00	1.00	1.00	1.00	0.11	0.22
Screw-in Bulbs	MassSAVE	0.90	1.00	1.00	1.00	1.00	0.076	0.286
Screw-in Bulbs (piggyback)	MassSAVE	0.90	1.00	1.00	1.00	1.00	0.076	0.286
CFL Bulb	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	0.35	1.00

In-Service Rate

RNC, LI RNC: 2006 ENERGY STAR® Homes New Homebuyer Survey Report.¹⁶

¹¹ Ibid.

¹² Nexus Market Research, Inc., RLW Analytics (2008). Residential Lighting Measure Life Study. New England Residential

Lighting Program Sponsors. ¹³ Massachusetts Common Assumption: In the Low Income program there is no limit on the number of CFLs installed per home; a longer lifetime is assumed to account for the shorter hours per day.

¹⁴ Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

¹⁵ Massachusetts Electric Utilities (2003). Non-Electric Benefit Performance Metrics – Residential 1. Memo to Massachusetts non-Electric Parties.

¹⁶ Nexus Market Research (2007). 2006 Energy Star Homes New Home Buyer Survey Report, Final Report, March 30, 2007. Prepared for the Massachusetts Joint Management Committee.

- MassSAVE: Impact evaluation of the MA, RI, VT 2003 Residential Lighting Programs¹⁷
- LI 1-4 Retrofit: Assume 100% installation rate.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

- RNC, LI RNC, MassSAVE: Coincidence factors are based on the 2009 Lighting Markdown Study.¹⁸
- LI 1-4 Retrofit: Coincidence factors are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.¹⁹

¹⁷ Nexus Market Research, Inc., RLW Analytics (2004). Impact Evaluation of the MA, RI, and VT 2003 Residential Lighting Programs. Submitted to The Cape Light Compact, State of Vermont Public Service Department for Efficiency Vermont, National Grid, Northeast Utilities, NSTAR, and Unitil Energy Systems, Inc.

¹⁸ Nexus Market Research and RLW Analytics (2009). *Residential Lighting Markdown Impact Evaluation*. Prepared for Markdown and Buydown Program Sponsors in CT, MA, RI, and VT. ¹⁹ Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program*. Prepared for National Grid.

Lighting – CFL Indoor Fixtures

Measure Overview

Description: The installation of ENERGY STAR® compact fluorescent (CFL) indoor fixtures. Compact fluorescent fixtures offer comparable luminosity to incandescent fixtures at significantly less wattage and significantly longer lifetimes. Hardwired fluorescent fixtures offer comparable luminosity to incandescent fixtures at significantly lower wattage and offer significantly longer lifespan. **Primary Energy Impact:** Electric

Secondary Energy Impact: None Non-Energy Impact: One-Time O&M Cost Reduction, Annual Discounted Rate Cost Reduction (Low Income only) Sector: Low Income, Residential Market: Lost Opportunity, Retrofit End Use: Lighting Program: ENERGY STAR Lighting, Residential New Construction & Major Renovation, Low-Income Residential New Construction,

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kW \times Hours$ $\Delta kW = \Delta kW$

Where:		
Unit	=	Rebated indoor fixture
ΔkWh	=	Average annual kWh reduction: 44 kWh
ΔkW	=	Average reduction in connected kW: 0.049 kW ²⁰
Hours	=	Average annual operating hours

Baseline Efficiency

The baseline efficiency case is an incandescent, screw-based fixture with an incandescent lamp.

High Efficiency

The high efficiency case is an ENERGY STAR® qualified compact fluorescent light fixture wired for exclusive use with pin-based CFLs.

Hours

The average annual operating hours are 912.5 hours/year (2.5 hours/day²¹ * 365 days/year).

²⁰ Nexus Market Research, Inc., RLW Analytics (2004) *Impact Evaluation of the MA, RI, and VT 2003 Residential Lighting Programs.* Submitted to The Cape Light Compact, State of Vermont Public Service Department for Efficiency Vermont, National Grid, Northeast Utilities, NSTAR, and Unitil Energy Systems, Inc.; Page 11, Table 1-8.

Measure Life

The measure life is 20 years.²²

Secondary Energy Impact

There are no secondary energy impacts for this measure.

Non-Energy Impact

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ²³	\$(R1-R2)/kWh	Low Income
One-Time Non-Resource	O&M Cost Reduction ²⁴	\$3.50/Fixture	

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Indoor Fixture	ES Lighting	0.95	1.00	1.00	1.00	1.00	0.11	0.22
Indoor Fixture	RNC, LI RNC	0.96	1.00	1.00	1.00	1.00	0.11	0.22

In-Service Rates

- ES Lighting: 2004 Impact Evaluation of MA, RI, VT Residential Lighting Program²⁵
- RNC, LI RNC: 2006 ENERGY STAR® Homes New Homebuyer Survey Report²⁶

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors for CFL fixtures are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.²⁷ Coincidence factors for indoor fixtures are based on the 2009 Lighting Markdown Study.²⁸

²¹ Nexus Market Research, Inc., RLW Analytics (2004) *Impact Evaluation of the MA, RI, and VT 2003 Residential Lighting Programs.* Submitted to The Cape Light Compact, State of Vermont Public Service Department for Efficiency Vermont, National Grid, Northeast Utilities, NSTAR, and Unitil Energy Systems, Inc.; Page 104.

²² Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Qualified Lighting Fixtures*. Interactive Excel Spreadsheet found at

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=LF.

²³ Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

²⁴ Massachusetts Electric Utilities (2003). *Non-Electric Benefit Performance Metrics – Residential 1*. Memo to Massachusetts non-Electric Parties.

²⁵Nexus Market Research, Inc., RLW Analytics (2004). *Impact Evaluation of the MA, RI, and VT 2003 Residential Lighting Programs*. Submitted to The Cape Light Compact, State of Vermont Public Service Department for Efficiency Vermont, National Grid, Northeast Utilities, NSTAR, and Unitil Energy Systems, Inc.; Page 11.

²⁶ Nexus Market Research & Dorothy Conant (2006). Massachusetts ENERGY STAR ® Homes: 2005 Baseline Study: Part II: Homeowner Survey Analysis Incorporating Inspection Data Final Report. Prepared for Joint Management Committee; Table 8.1 ²⁷ Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program*. Prepared for National Grid.

²⁸ Nexus Market Research and RLW Analytics (2009). *Residential Lighting Markdown Impact Evaluation*. Prepared for Markdown and Buydown Program Sponsors in CT, MA, RI, and VT.

Lighting – Outdoor Fixtures

Measure Overview

Description: The installation of hardwired ENERGY STAR® fluorescent outdoor fixtures with pin-based bulbs. Savings for this measure are attributable to high efficiency outdoor lighting fixtures and are treated similarly to indoor fixtures. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: One-time Non-Resource Sector: Residential Market: Lost Opportunity, Retrofit End Use: Lighting Program: ENERGY STAR Lighting

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms which use averaged inputs:

 $\Delta kWh = \Delta kW \times Hours$ $\Delta kW = \Delta kW$

Where:

Unit	=	Rebated outdoor fixture
ΔkWh		Average annual kWh reduction: 156 kWh
ΔkW	=	Average connected kW reduction: 0.095 kW ²⁹
Hours	=	Average annual operating hours

Baseline Efficiency

The baseline efficiency case is an incandescent, screw-based fixture with an incandescent bulb.

High Efficiency

The high efficiency case is an ENERGY STAR® fixture wired for exclusive use with a pin based CFL bulb.

Hours

The average annual operating hours are 1,642.5 hours/year (4.5 hours per day³⁰ * 365 days per year).

²⁹ Nexus Market Research, Inc., RLW Analytics (2004). *Impact Evaluation of the MA, RI, and VT 2003 Residential Lighting Programs*. Submitted to The Cape Light Compact, State of Vermont Public Service Department for Efficiency Vermont, National Grid, Northeast Utilities, NSTAR, and Unitil Energy Systems, Inc.; Table 1-8.

³⁰ Nexus Market Research, Inc., RLW Analytics (2004). *Impact Evaluation of the MA, RI, and VT 2003 Residential Lighting Programs*. Submitted to The Cape Light Compact, State of Vermont Public Service Department for Efficiency Vermont, National Grid, Northeast Utilities, NSTAR, and Unitil Energy Systems, Inc.; Page 104

Measure Life

The measure life is 6 years for markdown outdoor fixtures and 5 years for coupon outdoor fixtures.³¹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
One-Time Non-Resource	O&M Cost Impacts ³²	\$3.50/Bulb

Impact Factors for Calculating Adjusted Gross Savings

Measure Name								CF _{WP}
Outdoor Fixture	ES Lighting	0.87	1.00	100	1.00	1.00	0.11	0.22

In-Service Rates

2004 Impact Evaluation of MA, RI, VT Residential Lighting Program.³³

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on the 2009 Lighting Markdown Study.³⁴

³¹ Nexus Market Research, Inc., RLW Analytics (2008). *Residential Lighting Measure Life Study*. Prepared for New England Residential Lighting Program Sponsors; Page 1.

³² Massachusetts Electric Utilities (2003). Non-Electric Benefit Performance Metrics – Residential 1. Memo to Massachusetts non-Electric Parties.

³³ Nexus Market Research, Inc., RLW Analytics (2004) *Impact Evaluation of the MA, RI, and VT 2003 Residential Lighting Programs.* Submitted to The Cape Light Compact, State of Vermont Public Service Department for Efficiency Vermont, National Grid, Northeast Utilities, NSTAR, and Unitil Energy Systems, Inc.; Page 11.

³⁴ Nexus Market Research and RLW Analytics (2009). *Residential Lighting Markdown Impact Evaluation*. Prepared for Markdown and Buydown Program Sponsors in CT, MA, RI, and VT.

Lighting – Torchieres

Measure Overview

Description: The installation of high-efficiency ENERGY STAR® torchieres. High efficiency torchieres use fluorescent in place of halogen or incandescent bulbs to provide comparable luminosity at significantly reduced wattage.
Primary Energy Impact: Electric
Secondary Energy Impact: None
Non-Energy Impact: Annual Discounted Rate Cost Reduction (Low Income only)
Sector: Residential, Low Income
Market: Lost Opportunity, Retrofit
End Use: Lighting
Program: ENERGY STAR Lighting

Algorithms for Calculating Primary Energy Impact

Unit savings are based on the following algorithms which use averaged inputs:

 $\Delta kWh = \Delta kW \times Hours$ $\Delta kW = \Delta kW$

Where:

Unit	=	Rebated ENERGY STAR® Torchiere
ΔkWh		Average annual kWh reduction: 106 kWh
ΔkW	=	Average connected kW reduction: 0.088 kW ³⁵
Hours	=	Average annual operating hours

Baseline Efficiency

The baseline efficiency case is a halogen (or incandescent) torchiere fixture.

High Efficiency

The high efficiency case is a fluorescent torchiere fixture.

Hours

The average annual operating hours are 1,204.5 hours/year (3.3 hours/day³⁶ * 365 days/year).

Measure Life

The measure life is 8 years.³⁷

³⁵ Nexus Market Research, Inc., RLW Analytics (2004) *Impact Evaluation of the MA, RI, and VT 2003 Residential Lighting Programs.* Submitted to The Cape Light Compact, State of Vermont Public Service Department for Efficiency Vermont, National Grid, Northeast Utilities, NSTAR, and Unitil Energy Systems, Inc.; Table 1-8.

³⁶ Nexus Market Research, Inc., RLW Analytics (2004) *Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs.* Submitted to The Cape Light Compact, State of Vermont Public Service Department for Efficiency Vermont, National Grid, Northeast Utilities, NSTAR, and Unitil Energy Systems, Inc.; Page 104

Secondary-Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Torchieres	ES Lighting	0.83	1.00	1.00	1.00	1.00	0.11	0.22

In-Service Rates

2004 Impact Evaluation of MA, RI, VT Residential Lighting Program³⁸

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Staff Assumptions.

Coincidence Factors

Coincidence factors are based on the 2009 Lighting Markdown Study.³⁹

³⁷ Ibid.

³⁸Nexus Market Research, Inc., RLW Analytics (2004). *Impact Evaluation of the MA, RI, and VT 2003 Residential Lighting Programs*. Submitted to The Cape Light Compact, State of Vermont Public Service Department for Efficiency Vermont, National Grid, Northeast Utilities, NSTAR, and Unitil Energy Systems, Inc.; Page 11.
³⁹Nexus Market Research and RLW Analytics (2009). Residential *Lighting Markdown Impact Evaluation*. Prepared for Markdown and Buydown Program Sponsors in CT, MA, RI, and VT.

Lighting – Light–Emitting Diode Lights

Measure Overview

Description: The installation of Light-Emitting Diode (LED) screw-in bulbs. LEDs offer comparable luminosity to incandescent bulbs at significantly less wattage and significantly longer lamp lifetimes.
Primary Energy Impact: Electric
Secondary Energy Impact: None
Non-Energy Impact: Annual Discounted Rate Cost Reduction (Low Income only)
Sector: Residential
Market: Lost Opportunity
End Use: Lighting
Program: ENERGY STAR Lighting, Residential New Construction & Major Renovation, Low-Income Residential New Construction

Algorithms for Calculating Primary Energy Impact

Unit savings are based on the following algorithms which use averaged inputs:

 $\Delta kWh = (kW_{BASE} - kW_{LED}) \times Hours$ $\Delta kW = \Delta kW$

Where:

Unit	=	Rebated LED lamp or fixture
ΔkWh		Average annual energy savings: 48 kWh ⁴⁰
ΔkW	=	Average connected kW reduction: 0.013 kW ⁴¹
kW_{BASE}	=	Average connected kW of baseline bulb
kW_{LED}	=	Average connected kW of LED bulb
Hours	=	Average annual operating hours

Baseline Efficiency

The baseline efficiency case is a 65-watt incandescent bulb in a screw-based socket or fluorescent under cabinet light.

High Efficiency

The high efficiency case is an 18-watt LED downlight.

Hours

The average annual operating hours are 1,022 hours/year (2.8 hours/day⁴² * 365 days/year).

⁴⁰ Homes: Energy Star. *LED Light Bulbs for Consumers*.

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=ILB. Accessed on 10/15/10. ⁴¹ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family*

EnergyWise Program. Prepared for National Grid.

⁴² Nexus Market Research (2009). *Residential Lighting Markdown Impact Evaluation*. Prepared for Markdown and Buydown Program Sponsors in CT, MA, RI, and VT; Page 6.

Measure Life

The measure life is 20 years.⁴³

Secondary-Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ⁴⁴	\$(R1-R2)/kWh	Low Income

No operations and maintenance cost adjustments are claimed for this measure. At this time, the incremental cost is unclear given the continual changes in LED technology. In addition, the measure life savings from not replacing incandescent bulbs are also unclear.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
LED Lamp	ES Lighting	1.00	1.00	1.00	1.00	1.00	0.11	0.22
LED Fixture	ES Lighting	1.00	1.00	1.00	1.00	1.00	0.11	0.22
LED Fixture	RNC, LI RNC	1.00	1.00	0.73	0.73	0.73	0.11	0.22

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are from the 2009 Lighting Markdown Study.⁴⁵

⁴³ Expected lifetime form ENERGY STAR ®.

⁴⁴Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*.

⁴⁵ Nexus Market Research and RLW Analytics (2009). *Residential Lighting Markdown Impact Evaluation*. Prepared for Markdown and Buydown Program Sponsors in CT, MA, RI, and VT.

Process – Computer Monitors

Measure Overview

Description: Rebates for ENERGY STAR® Computer Monitors Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Process Program: ENERGY STAR Appliances

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:		
Unit	=	Rebated ENERGY STAR® computer monitor
ΔkWh		Average annual kWh savings per unit: 35 kWh ⁴⁶
ΔkW	=	Average annual kW savings per unit: 0.010 kW ⁴⁷

Baseline Efficiency

The baseline efficiency case is a conventional computer monitor.

High Efficiency

The high efficiency case is an ENERGY STAR® rated LCD monitor.

Hours

Not applicable.

Measure Life

The measure life is 6 years.⁴⁸

⁴⁶ Deemed savings developed based on assumptions in CEE (2008). *Consumer Electronics Program Guide: Information on*

Voluntary Approaches for the Promotion of Energy Efficient Consumer Electronics - Products and Practices; Page 9, Table 1. ⁴⁷ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program*. Prepared for National Grid.

⁴⁸ CEE (2008). Consumer Electronics Program Guide: Information on Voluntary Approaches for the Promotion of Energy Efficient Consumer Electronics - Products and Practices.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Computer Monitors	ES Appliances	1.00	1.00	1.00	1.00	1.00	0.35	1.00

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

Process – Desktop Computers

Measure Overview

Description: Rebates for ENERGY STAR® Desktop Computers Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Process Program: ENERGY STAR Appliances

Algorithms for Calculating Primary Energy Impact

Unit savings are based on engineering estimate of delta kW between computers that are idle, in sleep mode, or off:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where: Unit = Rebated ENERGY STAR® desktop computer ΔkWh = Average annual kWh reduction per unit: 76 kWh⁴⁹ ΔkW = Average kW savings per unit: 0.01 kW⁵⁰

Baseline Efficiency

The baseline efficiency case is a conventional desktop computer.

High Efficiency

The high efficiency case is an ENERGY STAR® rated desktop computer.

Hours

The operational hours include: 3,322 annual idle hours, 399 annual sleep hours, and 5,039 annual off hours.⁵¹

Measure Life

The measure life is 4 years.⁵²

⁴⁹ Environmental Protection Agency (2010). *Life Cycle Cost Estimate for ENERGY STAR Office Equipment*. Interactive Excel Spreadsheet found at www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_office_eq.xls.

⁵⁰ Ibid.

⁵¹ Ibid.

⁵² Ibid.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	•					RR _{WP}		
PC Computers	ES Appliances	1.00	1.00	1.00	1.00	1.00	0.35	1.00

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

Process – Room Air Cleaner

Measure Overview

Description: Rebates provided for the purchase of an ENERGY STAR® qualified room air cleaner. ENERGY STAR® air cleaners are 40% more energy-efficient than standard models. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Process Program: ENERGY STAR Appliances

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed and based on the following algorithms which use averaged inputs:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kWh / Hours$

Where:

Unit	=	Rebated room air cleaner
ΔkWh		Average annual kWh savings per unit: 268 kWh ⁵³
ΔkW	=	Average connected load reduction: 0.032 kW ⁵⁴
Hours	=	Annual operating hours

Baseline Efficiency

The baseline efficiency case is a conventional unit with clean air delivery rate (CADR) of 51-100.

High Efficiency

The high efficiency case is an ENERGY STAR® qualified air cleaner with a CADR of 51-100.

Hours

The savings are based on 8,760 operating hours per year.

Measure Life

The measure life is 9 years.⁵⁵

⁵³ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Room Air Cleaner*. Interactive Excel Spreadsheet found at www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorRoomAirCleaner.xls

⁵⁴ Ibid. ⁵⁵ Ibid.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Room Air Cleaner	ES Appliances	1.00	1.00	1.00	1.00	1.00	0.85	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

Process – Smart Strips

Measure Overview

Description: Switches off plug load using current sensors and switching devices which turn off plug load when electrical current drops below threshold low levels. Smart Strips can be used on electrical home appliances or in the workplace.
Primary Energy Impact: Electric
Secondary Energy Impact: None
Non-Energy Impact: Annual Discounted Rate Cost Reduction (Low Income only)
Sector: Residential, Low Income
Market: Lost Opportunity, Retrofit
End Use: Process
Program: ENERGY STAR Appliances

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Unit = Rebated smart strip ΔkWh = Average annual kWh savings per unit: 75 kWh⁵⁶ ΔkW = Max kW savings per unit: 0.060 kW

Baseline Efficiency

The baseline efficiency case is no power strip and leaving peripherals on or using a power surge protector.

High Efficiency

The high efficiency case is a Smart Strip Energy Efficient Power Bar.

Hours

The savings are based on 8,760 hours per year.

Measure Life

The measure life is 5 years.⁵⁷

Secondary-Energy Impacts

There are no secondary energy impacts for this measure.

⁵⁶ ECOS 2008 Entertainment Center and DVDs.

⁵⁷ Massachusetts Common Assumptions.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Smart Strips	ES Appliances	1.00	1.00	1.00	1.00	1.00	0.35	1.00
Smart Strips	MF Retrofit	1.00	1.00	1.00	1.00	1.00	0.35	1.00
Smart Strips	LI MF Retrofit	1.00	1.00	1.00	1.00	1.00	0.35	1.00

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

Process – Televisions

Measure Overview

Description: Rebates for televisions that meet ENERGY STAR® version 4.1 and 5.1 specifications. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Process Program: ENERGY STAR Appliances

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\begin{split} \Delta kWh &= kWh_{BASE} - kWh_{EE} \\ \Delta kW &= kW_{BASE} - kW_{EE} \end{split}$$

Where:

Unit	=	Rebated television
kWh _{BASE}	=	Average kW consumption of baseline models
kWh _{EE}	=	Average kWh consumption of energy efficient models
kW _{BASE}	=	Average kW load of baseline models
kW_{EE}	=	Average kW load of energy efficient models

Baseline Efficiency

The baseline efficiency case is a CEE Tier 1 television.

High Efficiency

The high efficiency case is an ENERGY STAR® qualified television, which uses about 40% less energy than standard units. Qualifying ENERGY STAR® TV products include standard TVs, HD-ready TVs, and the large flat-screen plasma TVs.⁵⁸ The savings, which are weighted between on and standby modes, are given in the following table.

Television Size	Weighted kW Savings	∆kWh /Unit
LCD/TV	0.022	194

Hours

Since the TV is assumed to be plugged in all year, the savings are based on 8,760 operational hours per year. The weighted savings are based on 5 hours on and 19 hours standby each day.

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=TV. Accessed on 10/11/10.

⁵⁸ Homes: Energy Star. *Televisions for Consumers*.

Measure Life

The measure life is 6 years.⁵⁹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impact

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	•					RR _{WP}		
LCD/TV	ES Appliances	1.00	1.00	1.00	1.00	1.00	0.50	0.85

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

⁵⁹ Environmental Protection Agency (2008). Life *Cycle Cost Estimate for ENERGY STAR Television*. Interactive Excel Spreadsheet found at www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Televisions_Bulk.xls

Refrigeration – Refrigerators (Lost Opportunity)

Measure Overview

Description: Rebates for purchase of ENERGY STAR® qualified refrigerators. ENERGY STAR® qualified refrigerators use at least 20% less energy than new, non-qualified models.
Primary Energy Impact: Electric
Secondary Energy Impact: None
Non-Energy Impact: Annual Discounted Rate Cost Reduction (Low Income only)
Sector: Residential, Low Income
Market: Lost Opportunity
End Use: Refrigeration
Program: ENERGY STAR Appliances, Residential New Construction & Major Renovation, Low-Income Residential New Construction

Algorithms for Calculating Primary Energy Impact

Unit savings are based on the following algorithms which use averaged inputs:

 $\Delta kWh = \Delta kWh_{BASE} - \Delta kWh_{ES}$ $\Delta kW = \Delta kW$

Where:

Unit	=	Installed ENERGY STAR® refrigerator
ΔkWh	=	Annual savings over non-ES refrigerators averaged by model type: 107 kWh ⁶⁰
ΔkW	=	Average kW reduction over non-ES refrigerator: 0.014 kW ⁶¹

Baseline Efficiency

The baseline efficiency case is a residential refrigerator that meets the Federal minimum standard for energy efficiency.

High Efficiency

The high efficiency case is an ENERGY STAR® residential refrigerator that uses 20% less energy than models not labeled with the ENERGY STAR® logo.

Hours

Not applicable.

⁶⁰ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Residential Refrigerator*. Interactive Excel Spreadsheet found at

www.energystar.gov/.../business/bulk_purchasing/bpsavings_calc/Consumer_Residential_Refrig_Sav_Calc.xls; average of savings form all refrigerator models.

⁶¹ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

Measure Life

The measure life is 12 years.⁶²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ⁶³	\$(R1-R2)/kWh	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Refrigerator Rebate	ES Appliances	1.00	1.00	1.00	1.00	1.00	1.00	0.92
Refrigerators	RNC, LI RNC	1.00	1.00	1.00	1.00	1.00	1.00	0.92

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

⁶² Environmental Protection Agency (2009). Life Cycle Cost Estimate for ENERGY STAR Residential Refrigerator. Interactive Excel Spreadsheet found at

www.energystar.gov/.../business/bulk_purchasing/bpsavings_calc/Consumer_Residential_Refrig_Sav_Calc.xls ⁶³ Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*.

Refrigeration – Refrigerators (Retrofit)

Measure Overview

Description: This measure covers the replacement of an existing inefficient refrigerator with a new ENERGY STAR® rated refrigerator. ENERGY STAR® qualified refrigerators use at least 20% less energy than non-qualified models. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Low Income only: Annual Discounted Rate Cost Reduction, One-Time Avoided Refrigerator Purchase Sector: Residential, Low Income Market: Retrofit End Use: Refrigeration Program: MassSAVE, Low-Income 1-4 Family Retrofit

Algorithms for Calculating Primary Energy Impact

For MassSAVE:

Unit savings are deemed based on the following algorithms and averaged inputs:

 $\Delta kWh = \Delta kWh_{RETIRE} + \Delta kWh_{ES}$ $\Delta kW = \Delta kW_{RETIRE} + \Delta kW_{ES}$

Where:

Unit	=	Replacement of existing refrigerator with new ENERGY STAR® Refrigerator
ΔkWh_{RETIRE}		Annual energy savings over remaining life of existing equipment: 884 kWh ⁶⁴
ΔkWh_{ES}		Annual energy savings over full life of new ES refrigerator: 80 kWh ^{65,66}
$\Delta k W_{RETIRE}$		Average demand reduction over remaining life of existing equipment: 0.030 kW ⁶⁷
ΔkW_{ES}	=	Average demand reduction over full life of new ES refrigerator: 0.010 kW ⁶⁸

For Low-Income 1-4 Family Retrofit:

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

⁶⁸ Ibid.

⁶⁴ Michael Blasnik & Associates (2004). *Measurement & Verification of Residential Refrigerator Energy Use 2003 - 2004 Metering Study*. Prepared for NSTAR MECO, NECO, and WMECO.

⁶⁵ Environmental Protection Agency (2009). Life Cycle Cost Estimate for ENERGY STAR Residential Refrigerator. Interactive Excel Spreadsheet found at

www.energystar.gov/.../business/bulk_purchasing/bpsavings_calc/Consumer_Residential_Refrig_Sav_Calc.xls ⁶⁶ NSTAR uses the Lost Opportunity savings of 107 kWh as the annual savings over the life of the new ES refrigerator. See *Refrigerator (Lost Opportunity) section.*

⁶⁷ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

Where:

Unit	=	Removal of existing refrigerator and installation of new efficient refrigerator
ΔkWh	=	Average annual kWh savings per unit: 1,122 kWh ⁶⁹
ΔkW	=	Max kW Reduction: 0.148 kW ⁷⁰

Baseline Efficiency

For MassSAVE:

The baseline efficiency case is an existing refrigerator for savings over the remaining life of existing equipment. The baseline efficiency case is a full-sized refrigerator (7.75 cubic feet) that meets the Federal minimum standard for energy efficiency for savings for the full life.⁷¹

For Low-Income 1-4 Family Retrofit:

The baseline efficiency case for both the replaced and baseline new refrigerator is an existing refrigerator. It is assumed that low-income customers would otherwise replace their refrigerators with a used inefficient unit.

High Efficiency

The high efficiency case is an ENERGY STAR® rated refrigerator that meets the ENERGY STAR® criteria for full-sized refrigerators (7.75 cubic feet), using at least 20% less energy than models meeting the minimum Federal government standard.

Hours

Savings are based on 8,760 operating hours per year.

Measure Life

For MassSAVE the remaining life of the existing refrigerator is 1 year, and the measure life for the new refrigerator is 12 years.⁷² For Low-Income 1-4 Family Retrofit the measure life is 19 years.⁷³

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

⁶⁹ Cadmus Group, Inc. (2009). Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program. Prepared for National Grid; Page 5, Table 1.

⁷⁰ Estimated using demand allocation methodology described in: Quantec, LLC (2000). Impact Evaluation: Single-Family *EnergyWise Program.* Prepared for National Grid. ⁷¹ Home: ENERGY STAR (2008). *ENERGY STAR Refrigerators & Freezers Key Product Criteria.*

http://www.energystar.gov/index.cfm?c=refrig.pr_crit_refrigerators. Accessed 10/11/10.

⁷² Environmental Protection Agency (2009). Life Cycle Cost Estimate for ENERGY STAR Residential Refrigerator. Interactive Excel Spreadsheet found at

www.energystar.gov/.../business/bulk_purchasing/bpsavings_calc/Consumer_Residential_Refrig_Sav_Calc.xls. ⁷³ Massachusetts Common Assumption.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ⁷⁴	\$(R1-R2)/kWh	Low Income
One-Time Non-Resource	One-Time Avoided Refrigerator Purchase ⁷⁵	\$200/Unit	Low Income 1-4 Family Retrofit only

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Refrigerators	MassSAVE	1.00	1.00	1.00	1.00	1.00	1.00	0.92
Refrigerator Replacement	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	1.00	0.92

In-Service Rates

In-service rates are 100% as it is assumed all refrigerators are in-use.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

- MassSAVE: Realization rates are based on Massachusetts Common Assumptions.
- LI 1-4 Retrofit: Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.⁷⁶

⁷⁴Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*.

⁷⁵ Ibid.

⁷⁶ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

Refrigeration – Freezers (Lost Opportunity)

Measure Overview

Description: Rebates provided for the purchase of ENERGY STAR® freezers. ENERGY STAR® qualified freezers use at least 10% less energy than new, non-qualified models and return even greater savings compared to old models. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Refrigeration Program: ENERGY STAR Appliances

Algorithms for Calculating Primary Energy Impact

Unit savings are based on the following algorithms which use averaged inputs:

 $\Delta kWh = \Delta kWh_{BASE} - \Delta kWh_{ES}$ $\Delta kW = \Delta kW$

Where:

Unit	=	Installed ENERGY STAR® freezer
ΔkWh		Annual savings over non-ES freezers averaged by model type: 136 kWh ⁷⁷
ΔkW	=	Average kW reduction over non-ES freezer: 0.018 kW ⁷⁸

Baseline Efficiency

The baseline efficiency case is a residential freezer that meets the Federal minimum standard for energy efficiency.

High Efficiency

The high efficiency case is based on an ENERGY STAR® rated freezer that uses 10% less energy than models not labeled with the ENERGY STAR® logo.

Hours

Not applicable.

Measure Life

The measure life is 12 years.⁷⁹

⁷⁷ NEEP. *Refrigerator and Freezer Screening Tool*; average savings of all given models.

⁷⁸ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

⁷⁹ Massachusetts Common Assumption: it has been assumed that LI customers would replace with a used inefficient unit so the full savings are counted for the full lifetime.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impact

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Freezer Rebate	ES Appliances	1.00	1.00	1.00	1.00	1.00	1.00	0.92

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Refrigeration – Freezers (Retrofit)

Measure Overview

Description: This measure covers the replacement of an existing inefficient freezer with a new energy efficient model. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Low Income only: Annual Discounted Rate Cost Reduction, One-Time Avoided Refrigerator Purchase Sector: Low Income Market: Retrofit End Use: Refrigeration Program: Low-Income 1-4 Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:

Unit	=	Removal of existing freezer and installation of new efficient freezer
ΔkWh	=	Average annual kWh savings per unit: 637 kWh ⁸⁰
ΔkW	=	Max kW Reduction: 0.084 kW ⁸¹

Baseline Efficiency

The baseline efficiency case for both the replaced and baseline new freezer is represented by the existing freezer. It is assumed that low-income customers would replace their freezers with a used inefficient unit.

High Efficiency

The high efficiency case is a new high efficiency freezer.

Hours

Not applicable.

Measure Life

The measure life is 19 years.⁸²

⁸⁰ Cadmus Group, Inc. (2009). Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization *Program*. Prepared for National Grid; Page 5, Table 1.

⁸¹ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ⁸³	\$(R1-R2)/kWh	Low Income
One-Time Non-Resource	One-Time Avoided Refrigerator Purchase ⁸⁴	\$200/Unit	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Freezer Replacement	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	1.00	0.92

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.⁸⁵

⁸² Massachusetts Common Assumption: it has been assumed that LI customers would replace with a used inefficient unit so the full savings are counted for the full lifetime.

⁸³ Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

⁸⁴ Ibid.

⁸⁵ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

Refrigeration – Refrigerator/Freezer Recycling

Measure Overview

Description: The retirement of old, inefficient secondary refrigerators and freezers. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Retrofit End Use: Refrigeration Program: ENERGY STAR Appliances

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed and are obtained from the referenced study.

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:

Unit	=	Removed secondary refrigerator or freezer
ΔkWh	=	Average annual kWh savings per unit: 490 kWh ⁸⁶
ΔkW	=	Average kW reduction per unit: 0.08 kW ⁸⁷

Baseline Efficiency

The baseline efficiency case is an old, inefficient secondary working refrigerator or freezer. Estimated average usage is based on combined weight of freezer energy use and refrigerator energy use.

High Efficiency

The high efficiency case assumes no replacement of secondary unit.

Hours

Refrigerator and freezer operating hours are 8,760 hours/year.

Measure Life

The measure life is 8 years.⁸⁸

⁸⁶ Nexus Market Research, Group (2011). *Evaluation of Appliance Recycling Program*. Prepared for Massachusetts Energy Efficiency Program Administrators. Study 9 in the 2010 Electric Energy Efficiency Annual Report. Weighted average of refrigerators and freezers rebated in 2010.

⁸⁷ Ibid.

⁸⁸ Ibid.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Ref Frz Recycling	ES Appliances	1.00	1.00	1.00	1.00	1.00	1.00	0.92

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Refrigeration – Appliance Removal

Measure Overview

Description: Removal of second working refrigerator or freezer. **Primary Energy Impact:** Electric Secondary Energy Impact: None Non-Energy Impact: Annual Discounted Rate Cost Reduction Sector: Low Income Market: Retrofit End Use: Refrigeration Program: Low-Income 1-4 Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:

Unit		Removal of secondary refrigerator or freezer with no replacement
ΔkWh	=	Average annual kWh savings per unit: 1,321 kWh ⁸⁹
ΔkW	=	Max kW reduction: 0.174 kW 90

Baseline Efficiency

The baseline efficiency case is the old, inefficient secondary working refrigerator or freezer.

High Efficiency

The high efficiency case assumes no replacement of secondary unit.

Hours

Not applicable.

Measure Life

The measure life is 5 years.⁹¹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

⁸⁹ Cadmus Group, Inc. (2009). Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program. Prepared for National Grid; average of refrigerator and freezer removal, Table 15.
 ⁹⁰ Estimated using demand allocation methodology described in: Quantec, LLC (2000). Impact Evaluation: Single-Family

EnergyWise Program. Prepared for National Grid.

⁹¹ Massachusetts Common Assumption.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ⁹²	\$(R1-R2)/kWh	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Appliance Removal	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	1.00	0.92

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.⁹³

⁹² Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

⁹³ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

Refrigeration – Basic Educational Measures

Measure Overview

Description: Installation of basic educational measures during an audit to help customers become more aware of energy efficiency. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Annual Discounted Rate Cost Reduction, One-Time Arrearage Reduction Sector: Low Income Market: Retrofit End Use: Behavior Program: Low-Income 1-4 Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \max(\Delta kW_{sp}, \Delta kW_{wp})$

Where: Unit = Completed audit ΔkWh = Average annual kWh savings per unit: 138 kWh⁹⁴ ΔkW = Max kW Reduction: 0.038 kW⁹⁵

Baseline Efficiency

The baseline efficiency case assumes no measures installed.

High Efficiency

The high efficiency case includes basic educational measures such as CFLs, low flow showerheads, pool and air conditioner timers, torchieres, and programmable thermostats.

Hours

Not applicable.

Measure Life

The measure life is 5 years.⁹⁶

⁹⁴ Cadmus Group, Inc. (2009). Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization *Program*. Prepared for National Grid.

⁹⁵ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

⁹⁶ Massachusetts Common Assumption.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ⁹⁷	\$(R1-R2)/kWh	Low Income
Annual Non-Resource	Annual Fire, Illness and Moving Avoidance Benefits ⁹⁸	\$100.48 /Participant	Low Income
One-Time Non-Resource	One-Time Arrearage Reduction ⁹⁹	\$70/Participant	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Baseload	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	0.35	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.¹⁰⁰

⁹⁷ Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

⁹⁸ Ibid.

⁹⁹ Ibid.

¹⁰⁰ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

HVAC – Central Air Conditioning

Measure Overview

Description: The installation of high efficiency Central AC systems. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}}\right) \times Hours$$
$$\Delta kW = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}}\right)$$

Where:

Unit	=	Installation of central AC system
Tons	=	Cooling capacity of AC equipment: Current default is 3 tons ¹⁰¹
SEER _{BASE}	=	Seasonal Energy Efficiency Ratio of baseline AC equipment
SEER _{EE}	=	Seasonal Energy Efficiency Ratio of new efficient AC equipment
EER _{BASE}	=	Energy Efficiency Ratio of base AC equipment
EER_{EE}	=	Energy Efficiency Ratio of new efficient AC equipment
Hours	=	Equivalent full load hours

The savings for this measure are given in the table below.¹⁰²

Measure	kW Savings	kWh Savings
CoolSmart AC (SEER 14.5 / EER 12)	0.273	103

Baseline Efficiency

The baseline efficiency case is a 13 SEER Central AC system with an EER of 11.

High Efficiency

The high efficiency case is an ENERGY STAR® qualified Central AC system. The high efficiency case has a 14.5 SEER and 12 EER.

¹⁰¹ ADM Associates, Inc. (2009). Residential Central AC Regional Evaluation – Free-Ridership Analysis. Prepared for CL&P; Page 4-12, Table 4-9. ¹⁰² The PAs are looking into abilities to track and calculate savings based on actual installed efficiencies for each project.

Hours

The equivalent full load cooling hours are 360 hours per year.¹⁰³

Measure Life

The measure life is 18 years.¹⁰⁴

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	$\boldsymbol{R}\boldsymbol{R}_{E}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
CoolSmart AC	RHVAC	1.00	1.00	1.00	1.00	1.00	0.85	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

¹⁰³ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation – Free-Ridership Analysis*. Prepared for CL&P; Page 4-5, Table 4-3.

¹⁰⁴ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

HVAC – Air Source Heat Pump

Measure Overview

Description: The installation of high efficiency Air Source Heat Pumps. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left[\left(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}} \right) \times Hours_{C} + \left(\frac{1}{HSPF_{BASE}} - \frac{1}{HSPF_{EE}} \right) \times Hours_{H} \right]$$

$$\Delta kW = \max(\Delta kW_{COOL}, \Delta kW_{HEAT})$$

$$\Delta k W_{COOL} = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}}\right)$$
$$\Delta k W_{HEAT} = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{HSPF_{BASE}} - \frac{1}{HSPF_{EE}}\right)$$

Where:

Unit	=	Installation of heat pump system
Tons	=	Capacity of HP equipment: Current default is 3 tons ¹⁰⁵
SEER _{BASE}	=	Seasonal efficiency of baseline HP equipment
SEER _{EE}	=	Seasonal efficiency of new efficient HP equipment
EER _{BASE}	=	Peak efficiency of base HP equipment
EER _{EE}	=	Peak efficiency of new efficient HP equipment
$HSPF_{BASE}$	=	Heating efficiency of baseline HP equipment
HSPF _{EE}	=	Heating efficiency of new efficient HP equipment
Hours _C	=	EFLH for cooling
Hours _H	=	EFLH for heating

Deemed savings for 2010:

Measure	SEER _{EE}	EER _{EE}	HSPF _{EE}	kW Savings	kWh Savings
CoolSmart HP (SEER 14.5 / EER 12)	14.5	12	8.2	0.347	519
CoolSmart HP (SEER \geq 15.0 / EER 12)	15	12	8.5	0.502	735

¹⁰⁵ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation – Free-Ridership Analysis*. Prepared for CL&P; Page 4-12, Table 4-9.

Baseline Efficiency

The baseline efficiency case is a heat pump with a HSPF of 7.6, SEER of 13, and EER of 11.

High Efficiency

The high efficiency case is an ENERGY STAR® qualified Air Source Heat Pump.

Hours

Equivalent full load hours are 1200 hours/year for heating¹⁰⁶ and 360 hours/year for cooling.¹⁰⁷

Measure Life

The measure life is 18 years.¹⁰⁸

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
CoolSmart HP	RHVAC	1.00	1.00	1.00	1.00	1.00	0.67	0.50

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

¹⁰⁶ Massachusetts Common Assumption.

¹⁰⁷ ADM Associates, Inc. (2009). Residential *Central AC Regional Evaluation – Free-Ridership Analysis*. Prepared for CL&P; Page 4-5, Table 4-3.

¹⁰⁸ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

HVAC – Ductless Mini Split Heat Pump

Measure Overview

Description: The installation of a more efficient ENERGY STAR® rated Ductless Mini Split HP system. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\begin{split} \Delta kWh &= \Delta kWh_{HP} + \Delta kWh_{DuctSealing} \\ \Delta kW &= \max(\Delta kW_{COOL}, \Delta kW_{HEAT}) + \Delta kW_{DuctSealing} \\ \Delta kWh_{HP} &= Tons \times \frac{12 \ kBtu / hr}{Ton} \Biggl[\Biggl(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}} \Biggr) \times Hours_{C} + \Biggl(\frac{1}{HSPF_{BASE}} - \frac{1}{HSPF_{EE}} \Biggr) \times Hours_{H} \Biggr] \\ \Delta kW_{COOL} &= Tons \times \frac{12 \ kBtu / hr}{Ton} \times \Biggl(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \Biggr) \\ \Delta kW_{HEAT} &= Tons \times \frac{12 \ kBtu / hr}{Ton} \times \Biggl(\frac{1}{HSPF_{BASE}} - \frac{1}{HSPF_{EE}} \Biggr) \end{split}$$

Where:

where.		
Unit	=	Installation of high efficiency ductless Mini Split System
ΔkWh_{HP}	=	Reduction in annual kWh consumption of HP equipment
ΔkW_{HP}	=	Reduction in electric demand of HP equipment
$\Delta kWh_{DuctSealing}$	=	Annual energy savings from duct sealing: See HVAC – Duct Sealing
$\Delta kW_{DuctSealing}$	=	Annual demand reduction from duct sealing: See HVAC – Duct Sealing
Tons	=	Capacity of HP equipment: Current default is 3 tons ¹⁰⁹
SEER _{BASE}	=	Seasonal efficiency of baseline HP equipment
SEER _{EE}	=	Seasonal efficiency of new efficient HP equipment, assumed to be 15 SEER
EER _{BASE}	=	Peak efficiency of base HP equipment
EER_{EE}	=	Peak efficiency of new efficient HP equipment, assumed to be 12.5 EER
HSPF _{BASE}	=	Heating efficiency of baseline HP equipment
HSPF _{EE}	=	Heating efficiency of new efficient HP equipment, assumed to be 8.2 EER
Hours _C	=	EFLH for cooling
Hours _H	=	EFLH for heating

¹⁰⁹ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation – Free-Ridership Analysis*. Prepared for CL&P; Page 4-12, Table 4-9.

Baseline Efficiency

The baseline efficiency case is a non- ENERGY STAR® rated ductless mini split heat pump.

High Efficiency

The high efficiency case is an ENERGY STAR® qualified Ductless Mini Split System. The savings for 2010 are listed in the table below. ¹¹⁰

Measure	kW Savings	kWh Savings
CoolSmart HP Mini Split (SEER 15 / EER 12.5)	0.693	761

Hours

The equivalent full load hours are 1200 hours/year for heating¹¹¹ and 360 hours/year for cooling.¹¹²

Measure Life

The measure life is 18 years.¹¹³

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Ductless Mini Split HP	RHVAC	1.00	1.00	1.00	1.00	1.00	0.67	0.50

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

¹¹⁰ These numbers are late correction and are not reflected in the reported savings. The reported savings are based on 1.039 kW and 720 kWh.

¹¹³ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

¹¹¹ Massachusetts Common Assumptions.

¹¹² ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation – Free-Ridership Analysis*. Prepared for CL&P; Page 4-5, Table 4-3.

HVAC – Central AC Quality Installation Verification (QIV)

Measure Overview

Description: The verification of proper charge and airflow during installation of new Central AC system. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$\Delta kWh = T$	ons:	$\times \frac{12 kBtu / hr}{Ton} \times \frac{1}{SEER} \times Hours \times 5\%$
$\Delta kW = Tc$	ons×	$\frac{12 kBtu / hr}{Ton} \times \frac{1}{EER} \times 5\%$
Where:		
Units	=	Completed QIV
Tons	=	Cooling capacity of AC equipment: Current default is 3 tons ¹¹⁴
SEER	=	Seasonal efficiency of AC equipment
EER	=	Peak efficiency of AC equipment
Hours	=	Equivalent full load hours
5%	=	Average percent demand reduction: 5.0% ¹¹⁵

Baseline Efficiency

The baseline efficiency case is a system whose installation is inconsistent with manufacturer specifications.

High Efficiency

The high efficiency case is a system whose installation is consistent with manufacturer specifications. The measure savings for 2010 are listed in the table below:

Measure	kW Savings	kWh Savings
CoolSmart AC QIV ES and NES	0.164	50

¹¹⁴ ADM Associates, Inc. (2009). Residential Central AC Regional Evaluation – Free-Ridership Analysis. Prepared for CL&P; Page 4-12, Table 4-9. ¹¹⁵ Massachusetts Common Assumption.

Hours

Equivalent full load cooling hours are 360 hours per year.¹¹⁶

Measure Life

The measure life is 18 years.¹¹⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
CoolSmart AC QIV ES	RHVAC	1.00	1.00	1.00	1.00	1.00	0.85	0.00
CoolSmart AC QIV NES	RHVAC	1.00	1.00	1.00	1.00	1.00	0.85	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

¹¹⁶ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation – Free-Ridership Analysis*. Prepared for CL&P; Page 4-5, Table 4-3.

¹¹⁷ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

HVAC – Heat Pump Quality Installation Verification (QIV)

Measure Overview

Description: The verification of proper charge and airflow during installation of new Heat Pump systems. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{SEER} \times Hours_{C} + \frac{1}{HSPF} \times Hours_{H}\right) \times 5\%$$

$$\Delta kW = \max(\Delta kW_{COOL}, \Delta kW_{HEAT})$$

$$\Delta kW_{COOL} = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{EER}\right) \times 5\%$$

$$\Delta kW_{HEAT} = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{HSPF}\right) \times 5\%$$

Where:
Unit = Completed QIV
Tons = Cooling capacity of HP equipment: Current default is 3 tons ¹¹⁸
SEER = Seasonal cooling efficiency of HP equipment
EER = Peak cooling efficiency of HP equipment
HSPF = Heating efficiency of HP equipment
HSPF = Heating efficiency of HP equipment
Hours_{C} = EFLH for cooling
Hours_{H} = EFLH for heating

=

Baseline Efficiency

The baseline efficiency case is a system whose installation is inconsistent with manufacturer specifications.

Average demand reduction: 5%¹¹⁹

5%

¹¹⁸ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation – Free-Ridership Analysis*. Prepared for CL&P; Page 4-12, Table 4-9.

¹¹⁹ Massachusetts Common Assumption.

High Efficiency

The high efficiency case is a system whose installation is consistent with manufacturer specifications. The measure savings for 2010 are listed in the table below:

Measure	kW Savings	kWh Savings
CoolSmart HP QIV ES and NES	0.237	334

Hours

The equivalent full load heating hours are 1,200 hours per year and the equivalent full load cooling hours are 360 hours per year.¹²⁰

Measure Life

The measure life is 18 years.¹²¹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
CoolSmart HP QIV ES	RHVAC	1.00	1.00	1.00	1.00	1.00	0.59	0.50
CoolSmart HP QIV NES	RHVAC	1.00	1.00	1.00	1.00	1.00	0.59	0.50

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

¹²⁰ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation – Free-Ridership Analysis*. Prepared for CL&P; Page 4-5, Table 4-3.

¹²¹ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

HVAC - Central AC Digital Check-up/Tune-up

Measure Overview

Description: Tune-up of an existing central AC system. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Tons \times \frac{12 \ kBtu \ / \ hr}{Ton} \times \frac{1}{SEER} \times Hours \times 5\%$$

$$\Delta kW = Tons \times \frac{12 \ kBtu \ / \ hr}{Ton} \times \frac{1}{EER} \times 5\%$$

Where:

Unit	=	Completed tune-up
Tons	=	Cooling capacity of AC equipment: Current default is 3 tons ¹²²
SEER	=	Seasonal efficiency of AC equipment, assumed to be 10 SEER.
EER	=	Peak efficiency of AC equipment, assumed to be 8.5 EER.
Hours	=	Equivalent full load hours
5%	=	Average demand reduction: $5\%^{123}$

Baseline Efficiency

The baseline efficiency case is a system that does not operate according to manufacturer specifications.

High Efficiency

The high efficiency case is a system that operates according to manufacturer specifications. The measure savings for 2010 are listed in the table below:

Measure	kW Savings	kWh Savings
CoolSmart AC Digital Check-up/Tune-up	0.212	65

¹²² ADM Associates, Inc. (2009). Residential Central AC Regional Evaluation – Free-Ridership Analysis. Prepared for CL&P; Page 4-12, Table 4-9. ¹²³ Massachusetts Common Assumption.

Hours

The equivalent full load cooling hours are 360 hours per year.¹²⁴

Measure Life

The measure life is 5 years.¹²⁵

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
CoolSmart AC Digital Check-up/Tune-up	RHVAC	1.00	1.00	1.00	1.00	1.00	0.85	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

<u>Coincidence Factors</u> Coincidence factors are based on Massachusetts Common Assumptions.

¹²⁴ ADM Associates, Inc. (2009). Residential Central AC Regional Evaluation – Free-Ridership Analysis. Prepared for CL&P; Page 4-5, Table 4-3.

¹²⁵ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

HVAC – Heat Pump Digital Check-up/Tune-up

Measure Overview

Description: Tune-up of an existing heat pump system. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

$$\Delta kWh = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{SEER} \times Hours_{C} + \frac{1}{HSPF} \times Hours_{H}\right) \times 5\%$$

$$\Delta kW = \max(\Delta kW_{cool}, \Delta kW_{HEAT})$$

$$\Delta kW_{cool} = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{EER}\right) \times 5\%$$

$$\Delta kW_{HEAT} = Tons \times \frac{12 \ kBtu / hr}{Ton} \times \left(\frac{1}{HSPF}\right) \times 5\%$$

Where:
Unit = Completed tune-up
Tons = Cooling capacity of HP equipment: Current default is 3 tons¹²⁶
SEER = Seasonal cooling efficiency of HP equipment, assumed to be 10 SEER.
EER = Peak cooling efficiency of HP equipment, assumed to be 8.5 EER.
HSPF = Heating efficiency of HP equipment, assumed to be 7 HSPF.
Hours_{C} = EFLH for cooling
Hours_{H} = EFLH for heating

5% = Average demand reduction: $5\%^{127}$

Baseline Efficiency

The baseline efficiency case is a system that does not operating according to manufacturer specifications.

High Efficiency

The high efficiency case is a system that does operate according to manufacturer specifications. The measure savings for 2010 are listed in the table below:

¹²⁶ ADM Associates, Inc. (2009). Residential Central AC Regional Evaluation – Free-Ridership Analysis. Prepared for CL&P; Page 4-12, Table 4-9.

Massachusetts Common Assumption.

Measure	kW Savings	kWh Savings
CoolSmart AC Digital Check-up/Tune-up	0.257	373

Hours

The equivalent full load hours are 1200 hours per year for heating 128 and 360 hours per year for cooling. 129

Measure Life

The measure life is 5 years¹³⁰

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
CoolSmart HP Digital Check-up/Tune-up	RHVAC	1.00	1.00	1.00	1.00	1.00	0.70	0.50

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

¹²⁸ Massachusetts Common Assumptions.

¹²⁹ ADM Associates, Inc. (2009). Residential Central AC Regional Evaluation – Free-Ridership Analysis. Prepared for CL&P; Page 4-5, Table 4-3.

¹³⁰ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

HVAC – Duct Sealing

Measure Overview

Description: A 66% reduction in duct leakage from 15% to 5% of supplied CFM. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on results of DOE2 modeling¹³¹:

 $\Delta kWh = \Delta kWh$

 $\Delta kW = \Delta kW$

Where: = Completed job Unit = Average annual kWh reduction based on DOE2 modeling¹³²: 212 kWh ΔkWh Average annual kW reduction based on DOE2 modeling¹³³: 0.300 kW ΔkW =

Baseline Efficiency

The baseline efficiency case is assumes a 15% leakage.

High Efficiency

The high efficiency case is a system with duct leakage reduced by 66% to 5% leakage.

Hours

Not applicable.

Measure Life

The measure life is 18 years.¹³⁴

¹³¹ The PAs are looking into abilities to track and calculate savings based on project-specific detail.

¹³² RLW Analytics (2002). Market Research for the Rhode Island, Massachusetts, and Connecticut Residential HVAC Market; Page 3, Table 2. ³² Ibid.

¹³⁴ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Duct Sealing	RHVAC	1.00	1.00	1.00	1.00	1.00	0.85	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

HVAC – Down Size ¹/₂ Ton

Measure Overview

Description: Reduction in system size consistent with manual J calculations. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: One-Time Cost Reduction Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on results of DOE2 modeling:

 $\Delta kWh = \Delta kWh / Ton \times \frac{1}{2} Ton$ $\Delta kW = \Delta kW / Ton \times \frac{1}{2} Ton$

Where:Completed job $\Delta kWh/Ton =$ Average annual kWh reduction based on DOE2 modeling¹³⁵: 203 kWh $\Delta kW/Ton =$ Average annual kW reduction based on DOE2 modeling¹³⁶: 0.030 kW

Baseline Efficiency

The baseline efficiency case is a system that is not sized in accordance with manual J calculation.

High Efficiency

The high efficiency case is a system that is sized in accordance with manual J calculation.

Hours

Not applicable.

Measure Life

The measure life is 18 years.¹³⁷

¹³⁵ RLW Analytics (2002). Market Research for the Rhode Island, Massachusetts, and Connecticut Residential HVAC Market; Page 3, Table 2.

¹³⁶ Ibid.

¹³⁷ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

Secondary-Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
	O&M Cost savings due to smaller size unit (by ½ ton) that is purchased compared to the unit that would have been purchased. ¹³⁸	\$300/Unit

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Down Size ¹ / ₂ Ton	RHVAC	1.00	1.00	1.00	1.00	1.00	0.85	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

¹³⁸ Massachusetts Common Assumption.

HVAC – Right Sizing

Measure Overview

Description: Documentation that system size is in compliance with manual J calculations. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: O&M Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on results of DOE2 modeling:

 $\Delta kWh = \Delta kWh$

 $\Delta kW = \Delta kW$

Where: Units = completed job ΔkWh = average annual kWh reduction based on DOE2 modeling¹³⁹: 123 kWh ΔkW = average annual kW reduction based on DOE2 modeling¹⁴⁰: 0.150 kW

Baseline Efficiency

The baseline efficiency case is a system that is not sized in accordance with manual J calculation.

High Efficiency

The high efficiency case is a system that is sized in accordance with manual J calculation.

Hours

Not applicable.

Measure Life

The measure life is 18 years.¹⁴¹

¹³⁹ RLW Analytics (2002). Market Research for the Rhode Island, Massachusetts, and Connecticut Residential HVAC Market; Page 3, Table 2.

¹⁴⁰ Ibid.

¹⁴¹ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
One-Time Non-Resource	O&M Cost savings due to smaller size unit (by ½ ton) that is purchased compared to the unit that would have been purchased. ¹⁴²	\$30/Unit

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Right Sizing	RHVAC	1.00	1.00	1.00	1.00	1.00	0.85	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

¹⁴² Massachusetts Common Assumptions

HVAC – Early Replacement of Central AC or Heat Pump Unit

Measure Overview

Description: Early replacement of Central Air Conditioning or Heat Pump Unit. This measure represents the additional savings achieved for the early replacement of existing inefficient AC or heat pump units over the remaining life of the existing equipment.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Retrofit End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on engineering estimates and assumptions:

 $\begin{array}{l} \Delta kWh = \Delta kWh \\ \Delta kW = \Delta kW \end{array}$

Where:

Unit	=	Replacement of existing inefficient system with new efficient system
ΔkWh	=	Average kWh savings per unit listed in table below.
ΔkW	=	Average kW savings per unit listed in table below.

The measure savings for 2010 are listed in the table below:

Measure	kW Savings	kWh Savings
Early Replacement of AC Equipment	0.963	415
Early Replacement of HP Equipment	1.235	876

Baseline Efficiency

The baseline efficiency case is assumed to be a typical 10-12 years old AC or heat pump unit.

High Efficiency

The high efficiency case is a code compliant central AC or HP unit.

Hours

The equivalent full load hours are 1,200 hours per year for heating¹⁴³ and 360 hours per year for cooling.¹⁴⁴

¹⁴³ Massachusetts Common Assumptions.

¹⁴⁴ ADM Associates, Inc. (2009). *Residential Central AC Regional Evaluation – Free-Ridership Analysis*. Prepared for CL&P; Page 4-5, Table 4-3.

Measure Life

The measure life is 7 years.¹⁴⁵

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Early Replacement of AC Equipment	RHVAC	1.00	1.00	1.00	1.00	1.00	0.85	0.00
Early Replacement of HP Equipment	RHVAC	1.00	1.00	1.00	1.00	1.00	0.67	0.50

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

¹⁴⁵ Massachusetts Common Assumption; The early replacement measure life of 7 years was determined by subtracting the estimated target age range of existing equipment between 10 and 12 years old from the 18 year measure life for new equipment.

HVAC - Quality Installation with Duct Sealing

Measure Overview

Description: 50% reduction in duct leakage from 20% to 10%. This measure may also include duct modifications. **Primary Energy Impact:** Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on results of DOE2 modeling:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:

Unit		Completed job
ΔkWh	=	Average annual kWh reduction based on DOE2 modeling ¹⁴⁶ : 513 kWh with duct
		modifications, 212 kWh without duct modifications
ΔkW	=	Average annual kW reduction based on DOE2 modeling ¹⁴⁷ : 0.850 kW with duct
		modifications, 0.300 kW without duct modifications

Baseline Efficiency

The baseline efficiency case is a system with an installation that is inconsistent with manufacturer specifications and may include leaky ducts.

High Efficiency

The high efficiency case is a system with an installation that is consistent with manufacturer specifications and may have reduced duct leakage.

Hours

Not applicable.

Measure Life

The measure life is 18 years.¹⁴⁸

¹⁴⁶ RLW Analytics (2002). Market Research for the Rhode Island, Massachusetts, and Connecticut Residential HVAC Market; Page 3, Table 2. ¹⁴⁷ Ibid.

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Energy Star QI	RHVAC	1.00	1.00	1.00	1.00	1.00	0.85	0.00
Energy Star QI w/ Duct modifications	RHVAC	1.00	1.00	1.00	1.00	1.00	0.85	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

¹⁴⁸ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

HVAC – Warm Air Furnace Electronically Commutated Motor (ECM)

Measure Overview

Description: Installation of an electronically commutated variable speed air supply motor. **Primary Energy Impact:** Electric Secondary Energy Impact: NG – Res Heating Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:

Unit = Installation of ECM = Gross annual kWh savings from the measure: 600 kWh^{149} ΔkWh Gross connected kW savings from the measure: 0.116 kW¹⁵⁰ ΔkW =

Baseline Efficiency

The baseline efficiency case is the installation of a furnace with a standard efficiency steady state motor.

High Efficiency

The high efficiency case is the installation of a furnace with an electronically commutated motor.

Hours

Not applicable.

Measure Life

The measure life is 18 years.¹⁵¹

Secondary Energy Impacts

This is the increased heating load as a result of a more efficient motor.

¹⁴⁹ Sachs, Harvey (2003). Energy Savings form Efficient Furnace Air Handlers in Massachusetts.

¹⁵⁰ Estimated using demand allocation methodology described in: Quantec, LLC (2000). Impact Evaluation: Single-Family *EnergyWise Program.* Prepared for National Grid. ¹⁵¹ Sachs, Harvey (2003). *Energy Savings form Efficient Furnace Air Handlers in Massachusetts.*

Measure	Energy Type	Savings	\Delta MMBtu/Unit
CoolSmart Warm Air Furnace ECM	NG - Residential Heating	-1.575 MMBtu ¹⁵²	-1.575

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
CoolSmart Warm Air Furnace ECM	RHVAC	1.00	1.00	1.00	1.00	1.00	0.67	0.50

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

¹⁵² Ibid. An adjustment is made to the savings value of 2.3 MMBtu given in the study. The original savings value is multiplied by 420 heating hours divided by 600 total running hours (420/600 = 0.70). An AFUE adjustment of 90/92 is also multiplied to the original value to create a more realistic final value.

HVAC – Brushless Furnace Fan Motor

Measure Overview

Description: Installation of a high efficiency steady state brushless furnace fan motor. Primary Energy Impact: Electric Secondary Energy Impact: Gas Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Cooling & Heating Equipment

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:		
Unit		Installation of BFF motors
∆kWh	=	Gross annual kWh savings: 600 kWh ¹⁵³
ΔkW	=	Gross connected kW savings: 0.116 kW ¹⁵⁴

Baseline Efficiency

The baseline efficiency case is the installation of a furnace with a standard efficiency steady state motor.

High Efficiency

The high efficiency case is the installation of a furnace with a brushless fan motor.

Hours

Not applicable.

Measure Life

The measure life is 18 years.¹⁵⁵

Secondary Energy Impacts

This is the increased heating load as a result of a more efficient motor.

¹⁵³ Sachs, Harvey (2003). Energy Savings form Efficient Furnace Air Handlers in Massachusetts.

¹⁵⁴ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

¹⁵⁵ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

Measure	Energy Type	Savings	∆MMBtu/Unit
Brushless Furnace Fan Motor	NG - Residential Heating	-1.575 MMBtu ¹⁵⁶	-1.575

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Brushless Furnace Fan Motor	RHVAC	1.00	1.00	1.00	1.00	1.00	0.67	0.50

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

¹⁵⁶ Sachs, Harvey (2003). *Energy Savings form Efficient Furnace Air Handlers in Massachusetts*. An adjustment is made to the savings value of 2.3 MMBtu given in the study. The original savings value is multiplied by 420 heating hours divided by 600 total running hours (420/600 = 0.70). An AFUE adjustment of 90/92 is also multiplied to the original value to create a more realistic final value.

HVAC - Room AC (Lost Opportunity)

Measure Overview

Description: The installation of ENERGY STAR® qualified room air conditioners. ENERGY STAR® qualified air conditioners are typically 10% more efficient than models meeting federal standards. **Primary Energy Impact:** Electric

Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity, Retrofit End Use: HVAC Program: ENERGY STAR Appliances

Algorithms for Calculating Primary Energy Impact

Unit savings are based on the following algorithms which use averaged inputs:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kWh / Hours$

Where:

Unit		Rebated room AC unit
∆kWh	=	Average annual kWh savings per unit: 49 kWh ¹⁵⁷
ΔkW	=	Average demand reduction per unit: 0.24 kW
Hours	=	Equivalent full load hours

Baseline Efficiency

The baseline efficiency case is a window AC unit that meets the minimum federal efficiency standard for efficiency.

High Efficiency

The high efficiency level is a room AC unit meeting or exceeding the federal efficiency standard by 10% or more. Average size and EERs is estimated from rebated units in previous year and updated annually.

Hours

Equivalent full load hours are 200 hours per year.¹⁵⁸

¹⁵⁷ Environmental Protection Agency (2009). Life Cycle Cost Estimate for ENERGY STAR Room Air Conditioner. Interactive Excel Spreadsheet found at www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRoomAC.xls. ¹⁵⁸ RLW Analytics (2008). *Coincidence Factor Study Residential Air Conditioners*. Prepared for Northeast Energy Efficiency Partnerships' New England Evaluation and State Program Working Group; Page 32, Table 22 - found by averaging the EFLH values for MA states (Boston and Worcester): (228+172)/2 = 200.

Measure Life

The measure life is 9 years.¹⁵⁹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Room AC (Upstream)	ES Appliances	1.00	1.00	1.00	1.00	1.00	0.134	0.00

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

All PAs use CFs from a 2008 residential room AC coincidence factor study.¹⁶⁰

 ¹⁵⁹ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Room Air Conditioner*. Interactive Excel Spreadsheet found at www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRoomAC.xls.
 ¹⁶⁰ RLW Analytics (2008). *Coincidence Factor Study Residential Air Conditioners*. Prepared for Northeast Energy Efficiency Partnerships' New England Evaluation and State Program Working Group.

HVAC – Window AC Replacement (Retrofit)

Measure Overview

Description: Replacement of existing inefficient room air conditioners with more efficient models. This is only offered as a measure when an AC timer would not reduce usage during the peak period.
Primary Energy Impact: Electric
Secondary Energy Impact: None
Non-Energy Impact: Annual Discounted Rate Cost Reduction, Annual Participant Benefit
Sector: Low Income
Market: Retrofit
End Use: HVAC
Program: Low-Income 1-4 Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:

Unit = Removal of existing window AC unit and installation of new efficient window AC unit $\Delta kWh = Average annual kWh savings per unit: 100 kWh^{161}$ $\Delta kW = Max load kW reduction: 0.214 kW^{162}$

Baseline Efficiency

The baseline efficiency case is the existing air conditioning unit.

High Efficiency

The high efficiency case is the high efficiency room air conditioning unit.

Hours

Not applicable.

Measure Life

The measure life is 12 years.¹⁶³

¹⁶¹ Quantec, LLC (2005). Evaluation of National Grid's 2003 Appliance Management Program: Room Air Conditioning Metering and Non-Energy Benefits Study. Prepared for National Grid.

¹⁶² Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

¹⁶³ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Room Air Conditioner*. Interactive Excel Spreadsheet found at www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRoomAC.xls.

There are no secondary energy impacts for this measure.

Non-Energy Impact

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ¹⁶⁴	\$(R1-R2)/kWh	Low Income
Annual Non-Resource	Annual participant benefit including comfort, safety, and health effects ¹⁶⁵	\$104/unit	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Window AC Replacement	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	1.00	0.02

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.¹⁶⁶

¹⁶⁴ Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

¹⁶⁵ Quantec, LLC (2005). Evaluation of National Grid's 2003 Appliance Management Program: Room Air Conditioning Metering and Non-Energy Benefits Study. Prepared for National Grid; Page iv-19. ¹⁶⁶ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

HVAC – Electric Weatherization

Measure Overview

Description: Installation of weatherization measures such as air sealing and insulation in electrically heated homes. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Annual Discounted Rate Cost Reduction, One-Time Arrearage Reduction, Annual Fire, Illness and Moving Avoidance Benefits, One-Time Property Value Benefit Sector: Low Income Market: Retrofit End Use: HVAC Program: Low-Income 1-4 Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:

Unit	=	Electrically-heated household with weatherization measures installed
ΔkWh		Average annual kWh reduction: 374 kWh ¹⁶⁷
ΔkW	=	Average annual kW reduction: 0.047 kW ¹⁶⁸

Baseline Efficiency

The baseline efficiency case is any existing home shell measures.

High Efficiency

The high efficiency case includes increased weatherization insulation levels.

Hours

Not applicable.

Measure Life

The measure life is 20 years.¹⁶⁹

¹⁶⁷ Cadmus Group, Inc. (2009). *Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program.* Prepared for National Grid; Table 1.

¹⁶⁸ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

¹⁶⁹ Massachusetts Common Assumption.

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ¹⁷⁰	\$(R1-R2)/kWh	Low Income
One-Time Non-Resource	The One-Time Property Value Benefit ¹⁷¹	\$20.70 x (\$Cost/kWh) x kWh Saved	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Electric Weatherization	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	0.03	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use $100\overline{\%}$ savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.¹⁷²

¹⁷⁰ Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*.

¹⁷¹ Ibid.

¹⁷² Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

HVAC – Oil Weatherization

Measure Overview

Description: Installation of weatherization measures such as air sealing and insulation in oil heated homes. Electric savings are achieved from reduced fan run time for heating and cooling systems.
Primary Energy Impact: Oil
Secondary Energy Impact: Electric
Non-Energy Impact: Annual Discounted Rate Cost Reduction, One-Time Arrearage Reduction, Annual Fire, Illness and Moving Avoidance Benefits, One-Time Property Value Benefit
Sector: Low Income
Market: Retrofit
End Use: HVAC
Program: Low-Income 1-4 Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:

Unit	=	Oil heated household with weatherization measures installed
ΔkWh	=	Average annual kWh reduction: 70 kWh ¹⁷³
ΔkW	=	Average annual kW reduction: 0.009 kW ¹⁷⁴

Baseline Efficiency

The baseline efficiency case is any existing home shell measures.

High Efficiency

The high efficiency case includes increased weatherization insulation levels.

Hours

Not applicable.

Measure Life

The measure life is 20 years.¹⁷⁵

¹⁷³ Cadmus Group, Inc. (2009). *Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program.* Prepared for National Grid.

¹⁷⁴ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

¹⁷⁵ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page A-2.

Measure	Energy Type	Savings ¹⁷⁶	∆MMBtu/Unit
Oil Weatherization	Oil	98 gallons/home	13.7

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ¹⁷⁷	\$(R1-R2)/kWh	Low Income
One-Time Non-Resource	The One-Time Property Value Benefit (Electric) ¹⁷⁸	\$20.70 x (\$Cost/kWh) x kWh Saved	Low Income
One-Time Non-Resource	The One-Time Property Value Benefit (Oil) ¹⁷⁹	\$20.70 x (\$Cost/gal Oil) x gal Oil Saved	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Oil Weatherization	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	0.03	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.180

¹⁷⁶ Cadmus Group, Inc. (2009). Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program. Prepared for National Grid.

¹⁷⁷ Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

¹⁷⁸ Ibid. ¹⁷⁹ Ibid.

¹⁸⁰ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

HVAC – Heating System Replacement (Oil)

Measure Overview

Description: Replacement of existing oil heating system with a new high efficiency system. Electric savings can be attributed to reduced fan run time and reduced usage of electric space heaters. Primary Energy Impact: Oil Secondary Energy Impact: Electric Non-Energy Impact: Annual Discounted Rate Cost Reduction, One-Time Arrearage Reduction, Annual Fire, Illness and Moving Avoidance Benefits, One-Time Property Value Benefit Sector: Low Income Market: Retrofit End Use: HVAC Program: Low-Income 1-4 Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:

Unit	=	Installation of new high efficiency oil heating system
ΔkWh	=	Average annual kWh savings per unit: 194 kWh ¹⁸¹
ΔkW	=	Average annual kW reduction per unit: 0.024 kW ¹⁸²

Baseline Efficiency

The baseline efficiency case is the existing inefficient heating equipment.

High Efficiency

The high efficiency case is the new efficient heating equipment.

Hours

Not applicable.

Measure Life

The measure life is 18 years.¹⁸³

¹⁸¹ Cadmus Group, Inc. (2009). *Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program.* Prepared for National Grid.

¹⁸² Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

¹⁸³ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Furnace*. Interactive Excel Spreadsheet found at www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Furnaces.xls.

Measure	Energy Type	Savings	∆MMBtu/Unit
Heating System Replacement (Oil)	Oil	87 Gallons/home ¹⁸⁴	12.2

Non-Energy Impacts

Benefit Type	Description	Savings ¹⁸⁵	Notes
Annual Non- Resource	Annual Discounted Rate Cost Reduction	\$(R1-R2)/kWh	Low Income
One-Time Non-	One-Time Property Value Benefit (Electric)	\$20.70 x \$Cost/kWh x kWh	Low
Resource		Saved	Income
One-Time Non-	One-Time Property Value Benefit (Oil)	\$20.70 x \$Cost/gal Oil x gal Oil	Low
Resource		Saved	Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heating System Replacement (Oil)	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	0.03	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.¹⁸⁶

¹⁸⁴ Cadmus Group, Inc. (2009). *Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program.* Prepared for National Grid.

¹⁸⁵ Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

¹⁸⁶ Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program*. Prepared for National Grid.

HVAC/Hot Water – ENERGY STAR® Homes Heating, Cooling, and DHW Measures

Measure Overview

Description: To capture lost opportunities, encourage the construction of energy-efficient homes, and drive the market to one in which new homes are moving towards net-zero energy.
Primary Energy Impact: Electric
Secondary Energy Impact: Natural Gas, Oil, Propane
Non-Energy Impact: Annual Discounted Rate Cost Reduction (Low Income only)
Sector: Residential, Low Income
Market: Lost Opportunity
End Use: HVAC, Hot Water
Program: Residential New Construction & Major Renovation, Low-Income Residential New Construction

Algorithms for Calculating Primary Energy Impact

As part of the ENERGY STAR® certification process, projected energy use is calculated for each home completed through the program and a geometrically matching baseline home (User Defined Reference Home) using Beacon, an ICF International proprietary DOE-2 based building energy simulation tool. The difference between the projected energy consumption of these two homes represents the energy savings produced by the certified home. This process is used to calculate electric demand as well as electric and fossil fuel energy savings due to heating, cooling, and water heating for all homes, both single family and multifamily. This process is documented in "Energy/Demand Savings Calculation and Reporting Methodology for the Massachusetts ENERGY STAR® Homes Program."¹⁸⁷

Baseline Efficiency

The User Defined Reference Home was revised for 2006 as a result of the baseline study completed in 2006.¹⁸⁸

High Efficiency

The high efficiency case is represented by the specific energy characteristics of each "as-built" home completed through the program.

Hours

Not applicable.

¹⁸⁷ ICF (2008). Energy/Demand Savings Calculation and Reporting Methodology for the Massachusetts ENERGY STAR ® Homes Program. Prepared for Joint Management Committee.

¹⁸⁸ Nexus Market Research & Dorothy Conant (2006). Massachusetts ENERGY STAR ® Homes: 2005 Baseline Study: Part I: Inspection Data Analysis Final Report. Prepared for Joint Management Committee. AND Nexus Market Research & Dorothy Conant (2006). Massachusetts ENERGY STAR ® Homes: 2005 Baseline Study: Part II: Homeowner Survey Analysis Incorporating Inspection Data Final Report. Prepared for Joint Management Committee.

Measure Life

Measure Type	Measure Life (years) ¹⁸⁹
Cooling	25
Heating	25
Water Heating	15

Secondary Energy Impacts

Gas, Oil and Propane savings for heating and water heating measures are custom calculating using the same methodology described for the electric energy and demand savings.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ¹⁹⁰	\$(R1-R2)/kWh	Low Income
One-Time Non-Resource	One Time Arrearage Reduction ¹⁹¹	\$35/Participant	Low Income heating measures only

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
ES Homes – Cooling	RNC, LI RNC	1.00	1.00	1.00	1.00	1.00	custom	custom
ES Homes – Heating	RNC, LI RNC	1.00	1.00	1.00	1.00	1.00	custom	custom
ES Homes – Water Heating	RNC, LI RNC	1.00	1.00	1.00	1.00	1.00	custom	custom

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are 100% because energy and demand savings are custom calculated based on project specific detail.

Coincidence Factors

Coincidence factors are custom calculated based on project-specific detail.

¹⁸⁹ Massachusetts Common Assumption.

¹⁹⁰Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*.

¹⁹¹ Ibid.

Hot Water – Domestic Hot Water Measures (Electric)

Measure Overview

Description: Installation of domestic hot water (DHW) measures including low flow showerheads, faucet aerators, and tank and pipe wraps in homes with electric water heating. **Primary Energy Impact:** Electric Secondary Energy Impact: None Non-Energy Impact: Residential Water, Annual Discounted Rate Cost Reduction Sector: Low Income Market: Retrofit End Use: Hot Water Program: Low-Income 1-4 Family Retrofit,

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:

Unit	=	Household with hot water efficiency measures installed
		Average annual kWh savings per unit: 134 kWh ¹⁹²
ΔkW	=	Average annual kW reduction per unit: 0.017 kW ¹⁹³

Baseline Efficiency

The baseline efficiency case is the existing hot water equipment.

High Efficiency

The high efficiency case includes low flow showerheads and faucet aerators as well as tank and pipe wraps.

Hours

Not applicable.

Measure Life

The measure life is 7 years.¹⁹⁴

¹⁹² Cadmus Group, Inc. (2009). Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program. Prepared for National Grid.

¹⁹³ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid. ¹⁹⁴ Massachusetts Common Assumption.

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Residential Water	Residential water savings per participant	8,785 Gallons/Participant	
Annual Non-Resource	Annual Discounted Rate Cost Reduction ¹⁹⁵	\$(R1-R2)/kWh	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
DHW Measures (Electric)	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	0.75	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.¹⁹⁶

¹⁹⁵Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

¹⁹⁶ Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program*. Prepared for National Grid.

Hot Water – Domestic Hot Water Measures (Oil and Gas)

Measure Overview

Description: Installation of domestic hot water (DHW) measures including low flow showerheads, faucet aerators, and tank and pipe wraps in homes that have oil or gas water heaters.
Primary Energy Impact: Oil or Gas
Secondary Energy Impact: None
Non-Energy Impact: Residential Water, Annual Discounted Rate Cost Reduction
Sector: Low Income
Market: Retrofit
End Use: Hot Water
Program: Low-Income 1-4 Family Retrofit

Algorithms for Calculating Primary Energy Impact

No electric savings are claimed for this measure.

Baseline Efficiency

The baseline efficiency case is the existing hot water equipment.

High Efficiency

The high efficiency case includes low flow showerheads and faucet aerators as well as tank and pipe wraps.

Hours

Not applicable.

Measure Life

The measure life is 7 years.¹⁹⁷

Secondary Energy Impacts

Measure	Energy Type	Savings ¹⁹⁸	∆MMBtu/Unit
DHW Measures (Gas)	NG – Residential DHW	9 Therms	0.9
DHW Measures (Oil)	Oil	6.4 Gallons	0.9

¹⁹⁷ Massachusetts Common Assumption.

¹⁹⁸ Cadmus Group, Inc. (2009). *Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program.* Prepared for National Grid.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Residential Water	Residential water savings per participant	8,785 Gallons/Participant	
Annual Non-Resource	Annual Discounted Rate Cost Reduction ¹⁹⁹	\$(R1-R2)/kWh	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
DHW Measures (Gas/Other)	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	0.00	0.00
DHW Measures (Oil)	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	0.00	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.²⁰⁰

¹⁹⁹Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

²⁰⁰ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

Hot Water – Dishwashers

Measure Overview

Description: Installation of ENERGY STAR® qualified dishwashers in residential homes during new construction or major renovation. ENERGY STAR® dishwashers are on average, 10% more energyefficient than non-qualified models. Primary Energy Impact: Electric Secondary Energy Impact: Natural Gas, Oil, Propane Non-Energy Impact: Water Savings, Low Income only: Annual Discounted Rate Cost Reduction Sector: Residential Market: Lost Opportunity End Use: Hot Water Program: Residential New Construction & Major Renovation, Low-Income Residential New Construction

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

 $\Delta kWh = kWh_{BASE} - kWh_{EE}$ $\Delta kW = \Delta kW$

Where:

Unit = Installation of ENERGY® dishwasher ΔkWh = National Grid gross average annual kWh savings per unit²⁰¹: 28 kWh for RNC, 25 kWh for LI RNC ΔkW = Average annual kW savings per unit²⁰²: 0.003 kW kWh_{BASE} = Average unit energy consumption for non-qualified product kWh_{EE} = Average unit energy consumption for ENERGY STAR® qualified product

Baseline Efficiency

The baseline efficiency case is a conventional standard sized non-ENERGY STAR® qualified model meeting Federal Standards energy performance metric criteria effective January 1, 2010 for dishwashers with maximum energy consumption of less than or equal to 355 kWh/year and maximum water consumption of 6.5 gallons of water/cycle.²⁰³

High Efficiency

The high efficiency case is an ENERGY STAR® qualified standard sized dishwasher meeting the energy performance metric criteria effective July 1, 2011 for dishwashers with maximum energy consumption of greater than or equal to 307 kWh/year and maximum water consumption of 5.0 gallons/cycle.

²⁰¹ Source for these values is the 9/7/09 version of the energystar.gov appliance calculator using 1/1/10 Federal Standard for baseline consumption.

²⁰² Ibid.

²⁰³ Home: ENERGY STAR (2010). *Dishwasher Key Product Criteria*.

http://www.energystar.gov/index.cfm?c=dishwash.pr_crit_dishwashers. Accessed on 10/20/10.

Hours

Dishwashers are assumed to run 215 cycles per year.²⁰⁴

Measure Life

The measure life is 10 years.²⁰⁵

Secondary Energy Impacts

Gas, Oil and Propane savings occur in homes where the water is heated by that fuel.²⁰⁶

Program	Natural Gas Savings (MMBtu/unit)	Oil Savings (MMBtu/unit)	Propane Savings (MMBtu/unit)			
RNC	0.0714	0.002	0.0041			
LI RNC	0.1035	0.0002	0.0096			

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Residential Water	Reduction in annual water usage compared to conventional unit ²⁰⁷	430 Gallons/Unit	
Annual Non- Resource	Annual Discounted Rate Cost Reduction ²⁰⁸	\$(R1-R2)/kWh	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Dishwasher	RNC	1.00	1.00	1.00	1.00	1.00	0.89	1.00
Dishwasher	LI RNC	1.00	1.00	1.00	1.00	1.00	0.91	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factors

Coincidence factors are based on Massachusetts Common Assumptions.

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerDishwasher.xls

²⁰⁴ Environmental Protection Agency (2010). *Life Cycle Cost Estimate for ENERGY STAR Residential Dishwasher*. Interactive Excel Spreadsheet found at

²⁰⁵ Ibid.

²⁰⁶ Ibid.

²⁰⁷ Ibid.

²⁰⁸ Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*.

Hot Water – Pool Pump

Measure Overview

Description: The installation of a 2-speed or variable speed drive pool pump. Operating a pool pump for a longer period of time at a lower wattage can move the same amount of water using significantly less energy.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Hot Water Program: ENERGY STAR Appliances

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms which use averaged inputs:

 $\Delta kWh = (kW_{BASE} \times Hours) \times 55\%$ $\Delta kW = \Delta kW$

Where:

Unit	=	Rebated 2-speed or variable speed pool pump
∆kWh	=	Average annual kWh reduction: 400 kWh
ΔkW	=	Average annual kW reduction: 0.071 kW ²⁰⁹
Hours	=	Average annual operating hours of pump
kW _{BASE}	=	connected kW of baseline pump
55%	=	average percent energy reduction from switch to 2-speed or variable speed pump ²¹⁰

Baseline Efficiency

The baseline efficiency case is a single speed pump.

High Efficiency

The high efficiency case is a 2-speed or variable speed pump.

Hours

Hours are considered on a case-by-case basis since they are dependent on seasonal factors, pool size, and treatment conditions.

²⁰⁹ Quantec (2001). *National Grid Demand Impact Template*. Interactive spreadsheet tool developed for National Grid.

²¹⁰ Davis Energy Group (2008). *Proposal Information Template for Residential Pool Pump Measure Revisions*. Prepared for Pacific Gas and Electric Company; Page 2.

Measure Life

The measure life is 10 years.²¹¹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Pool Pumps	ES Appliances	1.00	1.00	1.00	1.00	1.00	0.30	0.00

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factor

Coincidence factors are based on Massachusetts Common Assumptions.

²¹¹ Davis Energy Group (2008). *Proposal Information Template for Residential Pool Pump Measure Revisions*. Prepared for Pacific Gas and Electric Company.

Hot Water - Waterbed Mattress Replacement

Measure Overview

Description: Replacement of waterbed mattress with a standard mattress. **Primary Energy Impact:** Electric Secondary Energy Impact: None Non-Energy Impact: Annual Discounted Rate Cost Reduction Sector: Low Income Market: Retrofit End Use: Hot Water Program: Low-Income 1-4 Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kW$

Where:		
Unit		Mattress replacement
ΔkWh	=	Average annual kWh reduction: 872 kWh ²¹²
ΔkW	=	Average annual kW reduction: 0.109 kW ²¹³

Baseline Efficiency

The baseline efficiency case is an existing waterbed mattress.

High Efficiency

The high efficiency case is a new standard mattress.

Hours

Not applicable.

Measure Life

The measure life is 10 years.²¹⁴

²¹² Cadmus Group, Inc. (2009). Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program. Prepared for National Grid.

²¹³ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid. ²¹⁴ See the response to the question "How do I know when I need to buy a new mattress?" at the following link for more details:

http://www.serta.com/#/best-mattress-FAQs-mattresses-Serta-Number-1-Best-Selling-Mattress.html (8/19/2010).

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ²¹⁵	\$(R1-R2)/kWh	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Waterbed	LI 1-4 Retrofit	1.00	1.00	1.00	1.00	1.00	0.75	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

Coincidence Factors

Coincidence factors are estimated using the demand allocation methodology described in the 2000 EnergyWise program impact evaluation.²¹⁶

²¹⁵ Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

²¹⁶ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

MassSAVE – Vendor Measures

Measure Overview

Description: Retrofit measures installed through the MassSAVE program including: building envelope insulation and air sealing, duct sealing and insulation, programmable thermostats, heating system replacement, windows and DHW measures. Primary Energy Impact: Electric Secondary Energy Impact: Gas, Oil, Propane Non-Energy Impact: Water Sector: Residential Market: Retrofit End Use: HVAC, Hot Water Program: MassSAVE

Algorithms for Calculating Primary Energy Impact

National Grid uses vendor calculated savings for these measures in the Residential MassSAVE electric program. These savings values are calculated using vendor proprietary software where the user inputs a minimum set of technical data about the house and the software calculates building heating and cooling loads and other key parameters. The proprietary building model is based on thermal transfer, building gains, and a variable-based heating/cooling degree day/hour climate model. This provides an initial estimate of energy use that may be compared with actual billing data to adjust as needed for existing conditions. Then, specific recommendations for improvements are added and savings are calculated using measure-specific heat transfer algorithms.

Rather than using a fixed degree day approach, the building model estimates both heating degree days and cooling degree hours based on the actual characteristics and location of the house to determine the heating and cooling balance point temperatures. Savings from shell measures use standard U-value, area, and degree day algorithms. Infiltration savings use site-specific seasonal N-factors to convert measured leakage to seasonal energy impacts. HVAC savings are estimated based on changes in system and/or distribution efficiency improvements, using ASHRAE 152 as their basis. Lighting, appliance, and water heating savings are based on standard algorithms, taking into account operating conditions and pre- and post-retrofit energy consumption. Interactivity between architectural and mechanical measures is always included, to avoid overestimating savings due to incorrectly "adding" individual measure results.

Baseline Efficiency

The baseline efficiency case is the existing conditions of the participating household.

High Efficiency

The high efficiency case includes installed energy efficiency measures that reduce heating, cooling and water heating energy use.

Hours

Hours are project-specific.

Measure Life

Measure Name	Measure Life (years)
Air Sealing	15
DHW ISMs	7
Duct Insulation	20
Duct Seal	20
Heating System Replacement	18
Indirect Water Heater	20
Insulation	25
Thermostats	10
Windows	25

Secondary Energy Impacts

Gas, Oil and Propane savings are project-specific.

Non-Energy Impacts

~ 1	Description	Savings	Notes
Residential Water	Residential water savings for DHW measures ²¹⁷	8785 Gallons /Participant	DHW ISMs only

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Air Sealing (Electric)	MassSAVE	1.00	1.00	1.00	1.00	1.00	0.72	0.28
Air Sealing (Gas, Oil, Other FF)	MassSAVE	1.00	1.00	1.00	1.00	1.00	1.00	0.00
DHW ISMs (Electric)	MassSAVE	1.00	1.00	1.00	1.00	1.00	0.75	1.00
DHW ISMs (Gas, Oil, Other FF)	MassSAVE	1.00	1.00	1.00	1.00	1.00	0.00	0.00
Duct Insulation (Electric)	MassSAVE	1.00	1.00	1.00	1.00	1.00	0.72	0.28
Duct Insulation (Gas, Oil, Other FF)	MassSAVE	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Duct Sealing (Electric)	MassSAVE	1.00	1.00	1.00	1.00	1.00	0.72	0.28
Duct Sealing (Gas, Oil, Other FF)	MassSAVE	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Heating System Replacement (Gas, Oil, Other FF)	MassSAVE	1.00	1.00	1.00	1.00	1.00	0.00	0.00
Indirect Water Heater (Oil, Other FF)	MassSAVE	1.00	1.00	1.00	1.00	1.00	0.00	0.00
Insulation (Electric)	MassSAVE	1.00	1.00	1.00	1.00	1.00	0.72	0.28
Insulation (Gas, Oil, Other FF)	MassSAVE	1.00	1.00	1.00	1.00	1.00	1.00	0.00
Thermostats (Electric)	MassSAVE	1.00	1.00	1.00	1.00	1.00	0.03	1.00
Thermostats (Gas, Oil, Other FF)	MassSAVE	1.00	1.00	1.00	1.00	1.00	0.00	0.00
Windows (Electric)	MassSAVE	1.00	1.00	1.00	1.00	1.00	0.70	0.30
Windows (Gas, Oil, Other FF)	MassSAVE	1.00	1.00	1.00	1.00	1.00	0.00	0.00

²¹⁷ ACEEE 7th Ed (1999). *Consumer Guide to Home Energy Savings;* Page 133, multiplied by 0.6275 to account for MECo (Massachusetts Electric Co) territory family size-2000 US Census data.

In-Service Rates

In-service rates are set to 100% based on the assumption that all purchased units are installed.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are based on Massachusetts Common Assumptions.

Coincidence Factor

Coincidence factors are based on Massachusetts Common Assumptions.

Multifamily – Insulation (Walls, Roof, Floor)

Measure Overview

Description: Insulation upgrades are applied in existing facilities. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Low Income Only: Annual Discounted Rate Cost Reduction, Annual Fire, Illness and Moving Avoidance Benefits, One-Time Property Value Benefit Sector: Residential, Low Income Market: Retrofit End Use: HVAC Program: Multi-Family Retrofit, Low-Income MultiFamily Retrofit

Algorithms for Calculating Primary Energy Impact

$$\Delta kWh = SQFT \times kWh / SQFT \times \left(\frac{1}{R - VALUE_{BASE}} - \frac{1}{R - VALUE_{EE}}\right)$$
$$\Delta kW = \Delta kWh \times kW / kWh$$

Where:SQFT=Square feet of insulation installedR-VALUEBASE=R-Value of the existing insulationR-VALUEEE=R-Value of the new installed insulationkWh/SQFT=Average annual kWh reduction per SQFT of insulation. See Table below.kW/kWh=Average annual kW reduction per kWh reduction: 0.000125 kW/kWh²¹⁸

Insulation Type	kWh/Sqft ²¹⁹
Basement	10.62
Attic	38.803
WALL (N, S)	11.477
WALL (W, E)	10.025

Baseline Efficiency

The baseline efficiency case is the R-value of the existing insulation.

High Efficiency

The high efficiency case is insulation installed with a higher R-Value.

Hours

Not applicable.

 ²¹⁸ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.
 ²¹⁹ National Grid's Multifamily Screening Tool. This was developed in the early 1990's. Documentation of the specific variables

²¹⁹ National Grid's Multifamily Screening Tool. This was developed in the early 1990's. Documentation of the specific variables is unavailable. Evaluation results have consistently shown realization rates close to 100%.

Measure Life

The measure life is 25 years.²²⁰

Secondary Energy Impacts

There are no secondary energy impacts for this measure

Non-Energy Benefits

Benefit Type	Description	Savings ²²¹	Notes	
Annual Non-Resource	Annual Discounted Rate Cost Reduction	\$(R1-R2)/kWh	Low Income	
Annual Non-Resource	Annual Fire, Illness and Moving Avoidance Benefits	\$203/Participant	Low Income	
One-Time Non-Resource	The One-Time Property Value Benefit	\$20.70 x \$Cost/kWh x kWh Saved	Low Income	

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Insulation (Electric)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.91	0.91	0.91	0.03	1.00
Insulation (Non-Electric)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.99	0.99	0.99	0.03	1.00

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Realization rates from the National Grid Energy Wise 2008 Program Evaluation.²²²

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described National Grid 2000 EnergyWise impact evaluation.²²³

²²⁰ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group. ²²¹ Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*.

²²² Cadmus Group (2010). EnergyWise 2008 Program Evaluation. Prepared for National Grid.

²²³ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

Multifamily - DHW (Showerheads and Aerators)

Measure Overview

Description: An existing showerhead or aerator with a high flow rate is replaced with a new low flow showerhead or aerator. **Primary Energy Impact:** Electric Secondary Energy Impact: None Non-Energy Impact: Residential Water, Low Income Only: Annual Discounted Rate Cost Reduction Sector: Residential, Low Income Market: Retrofit End Use: Hot Water Program: Multi-Family Retrofit, Low-Income MultiFamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kWh \times kW / kWh$

Unit	=	Showerhead or aerator installation.
		Average annual kWh reduction per unit: 80.3 kWh ²²⁴
kW/kWh	=	Average kW reduction per kWh reduction: 0.000125 kW/kWh ²²⁵

Baseline Efficiency

The baseline efficiency case is an existing shower head or faucet aerator with a high flow.

High Efficiency

High efficiency is a low flow showerhead or faucet aerator.

Hours

Not applicable.

Measure Life

The measure life is 7 years.²²⁶

²²⁴ National Grid's Multifamily Screening Tool. This was developed in the early 1990's. Documentation of the specific variables is unavailable. Evaluation results have consistently shown realization rates close to 100%. ²²⁵ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family*

EnergyWise Program. Prepared for National Grid. ²²⁶ Massachusetts Common Assumption.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Benefits

Benefit Type	Description	Savings	Notes
Residential Water	Gallons water saved per year per unit that received DHW measures ²²⁷	8785 Gallons/Participant	
Annual Non- Resource	Annual Discounted Rate Cost Reduction ²²⁸	\$(R1-R2)/kWh	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Showerhead/Aerator (Electric)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.91	0.91	0.91	0.75	1.00
Showerhead/Aerator (Non-Electric)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.99	0.99	0.99	0.75	1.00

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Realization rates from the National Grid Energy Wise 2008 Program Evaluation.²²⁹

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described National Grid 2000 EnergyWise impact evaluation.²³⁰

²²⁷ ACEEE 7th Ed (1999). Consumer Guide to Home Energy Savings; Page 133, multiplied by 0.6275 to account for MECo (Massachusetts Electric Co) territory family size-2000 US Census data. ²²⁸ Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*.

²²⁹ Cadmus Group (2010). *EnergyWise 2008 Program Evaluation*. Prepared for National Grid.

²³⁰ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

Multifamily – DHW (Tank and Pipe Wrap)

Measure Overview

Description: A wrap is added to the water heater tank or pipes. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Low Income Only: Annual Discounted Rate Cost Reduction Sector: Residential, Low Income Market: Retrofit End Use: Hot Water Program: Multi-Family Retrofit, Low-Income MultiFamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kWh \times kW / kWh$

Where:	
Unit	= Each installation for tank wraps, per linear foot for pipe wrap.
kWh	= Average annual kWh reduction per unit: 55 kWh^{231}
kW/kWh	= Average annual kW reduction per kWh reduction: $0.000125 \text{ kW/kWh}^{232}$

Baseline Efficiency

The baseline efficiency case is no wrap on the tank or pipes.

High Efficiency

High efficiency is the addition of a wrap.

Hours

Not applicable.

Measure Life

The measure life is 7 years.²³³

Secondary-Energy Impacts

There are no secondary energy impacts for this measure.

²³¹ National Grid's Multifamily Screening Tool. This was developed in the early 1990's. Documentation of the specific variables is unavailable. Evaluation results have consistently shown realization rates close to 100%. ²³² Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family*

EnergyWise Program. Prepared for National Grid. ²³³ Massachusetts Common Assumption

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ²³⁴	\$(R1-R2)/kWh	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Tank/Pipe Wrap (Electric Heat)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.91	0.91	0.91	0.75	1.00
Tank/Pipe Wrap (Non-Electric Heat)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.99	0.99	0.99	0.75	1.00

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Realization rates from the National Grid Energy Wise 2008 Program Evaluation.²³⁵

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described National Grid 2000 EnergyWise impact evaluation.²³⁶

 ²³⁴ Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*.
 ²³⁵ Cadmus Group (2010). *EnergyWise 2008 Program Evaluation*. Prepared for National Grid.
 ²³⁶ Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program*. Prepared for National Grid.

Multifamily – Thermostats

Measure Overview

Description: Installation of programmable thermostats Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Low Income Only: Annual Discounted Rate Cost Reduction Sector: Residential, Low Income Market: Retrofit End Use: HVAC Program: Multi-Family Retrofit, Low-Income MultiFamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kWh \times kW / kWh$

Where:	
Unit	= Installation of programmable thermostat.
ΔkWh	= Average annual kWh reduction per unit: 288 kWh ²³⁷
kW/kWh	= Average annual kW reduction per kWh reduction: $0.000125 \text{ kW/kWh}^{238}$

Baseline Efficiency

The baseline efficiency case is a system without a set back programmable thermostat.

High Efficiency

The high efficiency case is a system with a set-back programmable thermostats and fixed set point (common areas) thermostats.

Hours

Not applicable.

Measure Life

The measure life is 10 years.²³⁹

 ²³⁷ National Grid's Multifamily Screening Tool. This was developed in the early 1990's. Documentation of the specific variables is unavailable. Evaluation results have consistently shown realization rates close to 100%.
 ²³⁸ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family*

 ²³⁸ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.
 ²³⁹ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures.*

²³⁹ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ²⁴⁰	\$(R1-R2)/kWh	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Thermostat (Electric)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.91	0.91	0.91	0.03	1.00
Thermostat (Non-Electric)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.99	0.99	0.99	0.03	1.00

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Realization rates from the National Grid Energy Wise 2008 Program Evaluation.²⁴¹

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described National Grid 2000 EnergyWise impact evaluation.²⁴²

²⁴⁰ Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

 ²⁴¹ Cadmus Group (2010). EnergyWise 2008 Program Evaluation. Prepared for National Grid.
 ²⁴² Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

Multifamily – Heat Pump Tune-Up

Measure Overview

Description: Heat pump tune-up for electrically-heated homes only. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Low Income Only: Annual Discounted Rate Cost Reduction Sector: Residential. Low Income Market: Retrofit End Use: HVAC Program: Multi-Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = \Delta kWh$ $\Delta kW = \Delta kWh \times kW / kWh$

Where:		
Unit	=	Heat pump tune-up performed
∆kWh		Average annual kWh reduction per unit: 1162 kWh ²⁴³
kW/kWh	=	Average kW reduction per kWh reduction: 0.000125 kW/kWh ²⁴⁴

Baseline Efficiency

The baseline efficiency case is an existing heat pump that is not tuned up.

High Efficiency

The high efficiency case is an existing heat pump that is tuned up.

Hours

Not applicable.

Measure Life

The measure life is 5 years.²⁴⁵

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

²⁴³ National Grid's Multifamily Screening Tool. This was developed in the early 1990's. Documentation of the specific variables is unavailable. Evaluation results have consistently shown realization rates close to 100%. ²⁴⁴ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family*

EnergyWise Program. Prepared for National Grid. ²⁴⁵ Massachusetts Common Assumption

Non-Energy Benefits

There are no non-energy benefits for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heat Pump Tune-up (Electric)	MF Retrofit	1.00	1.00	0.91	0.91	0.91	0.03	1.00

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Realization rates from the National Grid Energy Wise 2008 Program Evaluation.²⁴⁶

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described National Grid 2000 EnergyWise impact evaluation.²⁴⁷

²⁴⁶ Cadmus Group (2010). *EnergyWise 2008 Program Evaluation*. Prepared for National Grid.

²⁴⁷ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

Multifamily – Air Sealing

Measure Overview

Description: Thermal shell air leaks are sealed through strategic use and location of air-tight materials.
Primary Energy Impact: Electric
Secondary Energy Impact: None
Non-Energy Impact: Low Income Only: Annual Discounted Rate Cost Reduction
Sector: Residential, Low Income
Market: Retrofit
End Use: HVAC
Program: Multi-Family Retrofit, Low-Income MultiFamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated using the following algorithms and assumptions:

$\Delta kWh = Stories \times SQFT \times (CFM / SQFT_{PRE} - CFM / SQFT_{POST}) \times \Delta kW$	Vh / CFM
$\Delta kW = \Delta kWh \times kW / kWh$	

Where:		
Stories	=	Total stories in the multi-family building
SQFT	=	Total SQFT of building
CFM/SQFT _{PRE}	=	Estimate of pre-retrofit air leakage in CFM/SQFT based on number of stories in the
		building and air-tightness ratings of the existing roof and floor.
CFM/SQFT _{POST}	=	Estimate of post-retrofit air leakage in CFM/SQFT based on number of stories in the
		building and air-tightness ratings of the improved roof and floor.
∆kWh/CFM		Average annual kWh reduction per CFM: 2.48633 kWh/CFM ²⁴⁸
kW/kWh	=	Average kW reduction per kWh reduction: 0.000125 kW/kWh ²⁴⁹

Baseline Efficiency

The baseline efficiency case is a facility that has not received comprehensive air-sealing treatment.

High Efficiency

The high efficiency case is a facility with thermal shell air leaks that are sealed, leading to a reduction in air leakage.

Hours

Not applicable.

 ²⁴⁸ National Grid's Multifamily Screening Tool. This was developed in the early 1990's. Documentation of the specific variables is unavailable. Evaluation results have consistently shown realization rates close to 100%.
 ²⁴⁹ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family*

²⁴⁹ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

Measure Life

The measure life is 15 years.²⁵⁰

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Benefits

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ²⁵¹	\$(R1-R2)/kWh	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Air Sealing (Electric Heat)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.91	0.91	0.91	0.03	1.00
Air Sealing (Non-Electric Heat)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.99	0.99	0.99	0.03	1.00

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Realization rates are from the National Grid Energy Wise 2008 Program Evaluation.²⁵²

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described National Grid 2000 EnergyWise impact evaluation.²⁵³

²⁵⁰ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group. ²⁵¹ Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*.

²⁵² Cadmus Group (2010). EnergyWise 2008 Program Evaluation. Prepared for National Grid.

²⁵³ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

Multifamily – Refrigerators and Freezers

Measure Overview

Description: Removal of old inefficient refrigerator or freezer with the installation of new efficient refrigerator or freezer. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: Low Income Only: Annual Discounted Rate Cost Reduction, One-Time Avoided Refrigerator Purchase Sector: Residential. Low Income Market: Retrofit End Use: Refrigeration Program: Multi-Family Retrofit, Low-Income MultiFamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated using the following algorithms and assumptions:

 $\Delta kWh = kWh_{PRE} - kWh_{POST}$ $\Delta kW = \Delta kWh \times kW / kWh$

Where:

Unit	= Replacement of existing refrigerator with new ENERGY STAR® refrigerator
kWh_{PRE}	= Annual kWh consumption of existing equipment. Value entered by the user.
kWh _{POST}	= Annual kWh consumption of new installed equipment. Value entered by the user.
kW/kWh	= Average kW reduction per kWh reduction: 0.00013 kW/kWh ²⁵⁴

Baseline Efficiency

The baseline efficiency case is an existing refrigerator for which the annual kWh may be looked up in a refrigerator database. If the manufacturer and model number are not found, the refrigerator is metered for 1.5 hours in order to determine the annual kWh.

High Efficiency

The high efficiency case is a new more efficiency refrigerator. The manufacture and model number is looked up in a refrigerator database to determine annual kWh.

Measure Life

The measure life is 12 years for non low income²⁵⁵ and 19 years for low income.²⁵⁶

²⁵⁴ Estimated using demand allocation methodology described in: Quantec, LLC (2000). Impact Evaluation: Single-Family *EnergyWise Program.* Prepared for National Grid. ²⁵⁵ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Residential Refrigerator.* Interactive

Excel Spreadsheet found at

www.energystar.gov/.../business/bulk_purchasing/bpsavings_calc/Consumer_Residential_Refrig_Sav_Calc.xls. ²⁵⁶ Massachusetts Common Assumption.

Hours

Not applicable.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction 257	\$(R1-R2)/kWh	Low Income
One-Time Non-Resource	One-Time Avoided Refrigerator Purchase ²⁵⁸	\$200/Unit	

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Refrig/Freezers (Electric Heat)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.91	0.91	0.91	1.00	0.92
Refrig/Freezers (Non-Electric Heat)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.99	0.99	0.99	1.00	0.92

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Realization rates from the National Grid Energy Wise 2008 Program Evaluation.²⁵⁹

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described National Grid 2000 EnergyWise impact evaluation.²⁶⁰

²⁵⁷Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits.

²⁵⁸ Ibid...

²⁵⁹ Cadmus Group (2010). *EnergyWise 2008 Program Evaluation*. Prepared for National Grid.

²⁶⁰ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

MultiFamily – Fixtures and CFLs

Measure Overview

Description: Removal of existing inefficient fixtures/bulbs with the installation of new efficient fixtures/bulbs Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: O&M, Low Income Only: Annual Discounted Rate Cost Reduction Sector: Residential, Low Income Market: Retrofit End Use: Lighting Program: Multi-Family Retrofit, Low-Income MultiFamily Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are calculated using the following algorithms and assumptions:

$\Delta kWh = \left[\left(QTY_{PRE} \times Watts_{PRE} \times Hours_{PRE} \right) - \left(QTY_{EE} \times Watts_{EE} \times Hours_{EE} \right) \right] / 1000 \times 52$
$\Delta kW = \left[\left(QTY_{PRE} \times Watts_{PRE} \right) - \left(QTY_{EE} \times Watts_{EE} \right) \right] / 1000$

Where:

() IICI C.		
QTY_{PRE}	=	Quantity of pre-retrofit fixtures/bulbs
QTY_{EE}	=	Quantity of efficient fixtures/bulbs installed
Watts _{PRE}	=	Rated watts of pre-retrofit fixtures/bulbs
Watts _{EE}	=	Rated watts of efficient fixtures/bulbs installed
Hours _{PRE}	=	Weekly hours of operation for pre-retrofit case lighting fixtures/bulbs
Hours _{EE}	=	Weekly hours of operation for efficient lighting fixtures/bulbs
52	=	Weeks per year

Baseline Efficiency

The baseline efficiency case is the existing fixture and bulbs.

High Efficiency

The high efficiency case is the new fixture and lamps.

Measure Life

The measure life is 7 years for CFLs and 20 years for fixtures.

Hours

Operating hours are estimated by the vendor for each facility. Typical assumptions are 24 hours/day for common area lighting, 12 hours/day for exterior lighting, and 3 hours/day for in-unit lighting, but may be adjusted based on type of housing. Estimates are verified with facility maintenance staff when possible.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction ²⁶¹	\$(R1-R2)/kWh	Low Income
One-Time Non-Resource (CFL)	O&M Cost Reduction ²⁶²	\$3.00/Bulb	
One-Time Non-Resource (Fixture)	O&M Cost Reduction ²⁶³	\$3.50/Fixture	

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
CFLs (Electric)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.91	0.91	0.91	0.35	1.00
CFLs (Non-Electric)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.99	0.99	0.99	0.35	1.00
Fixtures (Electric)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.91	0.91	0.91	0.35	1.00
Fixtures (Non-Electric)	MF Retrofit, LI MF Retrofit	1.00	1.00	0.99	0.99	0.99	0.35	1.00

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Realization rates from the National Grid Energy Wise 2008 Program Evaluation.²⁶⁴

Coincidence Factors

Summer and winter coincidence factors are estimated using demand allocation methodology described National Grid 2000 EnergyWise impact evaluation.²⁶⁵

²⁶¹ Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*.

 ²⁶² MA Electric Utilities (2003). Non-Electric Benefit Performance Metrics – Residential 1. Memo to MA non-Electric Parties.
 ²⁶³ Ibid.

²⁶⁴ Cadmus Group (2010). EnergyWise 2008 Program Evaluation. Prepared for National Grid.

²⁶⁵ Quantec, LLC (2000). Impact Evaluation: Single-Family EnergyWise Program. Prepared for National Grid.

Behavior – OPOWER Electric

Measure Overview

Description: The OPOWER program sends energy use reports to participating electric customers in order to change customers' energy-use behavior. In 2010, the program was planned with only one measure for all participant cohorts. In 2011, the program was planned with unique measures for each participant cohort. In 2011, the program's name was changed to Behavior/Feedback. **Primary Energy Impact**: Electric

Secondary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Products and Services End Use: Behavior Program: OPOWER Program

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta kWh = (kWh_{BASE})(\% SAVE)$ $\Delta kW = \Delta kWh / 4000$

Where:

Unit	=	One participant household
kWh _{BASE}	=	Baseline consumption of kWh. See Table below.
%SAVE _{kWh}	=	Energy savings percent per program participant. See Table below.

OPOWER Program - Electric Savings Factors²⁶⁶

or o while in the submission of the state of									
Measure Name	kWh BASE	% SAVE	∆kWh/Unit	∆kW/Unit					
CUSTSERV	13,017	1.61%	209.58	0.052					

Baseline Efficiency

The baseline efficiency case is a customer who does not receive OPOWER Behavior/Feedback program reports.

High Efficiency

The high efficiency case is a customer who receives an OPOWER Behavior/Feedback program report.

Hours

Not applicable.

²⁶⁶ ODC and Navigant (2011). *MA Cross-Cutting Behavioral Program Evaluation*. Prepared for Massachusetts Energy Efficiency Advisory Council. Study 17 in the 2010 Massachusetts Electric Energy Efficiency Annual Report.

Measure Life

The measure life is 1 year.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
CUSTSERV	OPOWER	1.00	1.00	1.00	1.00	1.00	0.25	1.00

In-Service Rates

In-services rates are 100% since the program tracks all participating customers.

Savings Persistence Factor

Savings persistence is 100% since the measure life for each participant is 1 year.

Realization Rates

Realization rates are 100% because deemed savings are based on assumptions from year-to-date vendor findings

Coincidence Factors

Coincidence Factors are based on evaluation results.²⁶⁷

²⁶⁷ Ibid.

Commercial and Industrial Electric Efficiency Measures

Lighting – Advanced Lighting Design (Performance Lighting)

Measure Overview

Description: Advanced lighting design refers to the implementation of various lighting design principles aimed at creating a quality and appropriate lighting experience while reducing unnecessary light usage. This is often done by a professional in a new construction situation. Advanced lighting design uses techniques like maximizing task lighting and efficient fixtures to create a system of optimal energy efficiency and functionality. **Primary Energy Impact:** Electric

Secondary Energy Impact: Electric Secondary Energy Impact: Gas, Oil Non-Energy Impact: O&M Sector: Commercial and Industrial Market: Lost Opportunity End Use: Lighting Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

$$\Delta kWh = \sum_{i=1}^{n} \left(\frac{Watts_{BASE,i} - Watts_{EE,i}}{1000} \right) (Area_{i}) (Hours_{i})$$

$$\Delta kW = \sum_{i=1}^{n} \left(\frac{Watts_{BASE,i} - Watts_{EE,i}}{1000} \right) (Area_i)$$

Where:

where:		
Ν	=	Total number of spaces in Space-by-Space Method or 1 for Building Area Method
Watts _{BASE,i}	=	Allowed lighting wattage per square foot based on energy code requirements for
		building or space type <i>i</i> . For values, see Appendix A: Table 16 and Appendix A:
		Table 17.
Watts _{EE,i}	=	Installed lighting wattage per square foot of the efficient lighting system for building or
		space type <i>i</i>
1000	=	Conversion factor: 1000 watts per 1 kW
Area _i	=	Area of building or space <i>i</i> in square feet
Hours _i	=	Annual hours of operation of the lighting equipment for building or space type <i>i</i>

Note on HVAC system interaction: Additional Electric savings from cooling system interaction are included in the calculation of adjusted gross savings for Lighting Systems projects. The HVAC interaction adjustment factor is determined from lighting project evaluations and is included in the energy realization rates and demand coincidence factors and realization rates.

Baseline Efficiency

The Baseline Efficiency assumes compliance with lighting power density requirements as mandated by Massachusetts State Building Code. As described in Chapter 13 of the aforementioned document, energy efficiency must be met via compliance with the International Energy Conservation Code (IECC) 2009. IECC offers one compliance path, the Building Area Method. ASHRAE 90.1-2007 offers two compliance paths. For completeness, the lighting power density requirements for both the Building Area Method and

the Space-by-Space Method are presented.²⁶⁸ Table 16 and Table 17 in Appendix A: Common Lookup Tables detail the specific power requirements by compliance path.

High Efficiency

The high efficiency scenario assumes lighting systems that achieve lighting power densities below those required by Massachusetts State Building Code. Actual site lighting power densities should be determined on a case-by-case basis.

Hours

The annual hours of operation for lighting systems are site-specific and should be determined on a caseby-case basis.

Measure Life

Measure	Measure Life ²⁶⁹
Fluorescent Fixture	15 years
Hardwired CFL	15 years
LED Exit Signs	15 years
HID (interior and exterior)	15 years

Secondary Energy Impacts

Heating energy will be increased due to reduced lighting waste heat. This impact is estimated as an average impact in heating fossil fuel consumption per unit of energy saved.

Measure	Energy Type	Impact ²⁷⁰
Interior Lighting	C&I Gas Heat	-0.0003649 MMBtu/ Δ kWh
Interior Lighting	Oil	-0.0007129 MMBtu/∆kWh

Non-Energy Impacts

Annual non-energy benefits are claimed due to the reduced operation and maintenance costs associated with the longer measure lived of lamps and ballasts as compared to the base or pre-retrofit case. See Table 20 for values.

Benefit Type	Description	Savings	Notes
Annual Non-	Annual O&M dollars saved due to avoided incandescent	\$OM/Fixture	CFL Fixtures
Resource	bulbs and labor		only

²⁶⁸ IECC 2009 presents requirements consistent with ASHRAE 90.1-2007 for the Building Area Method but does not present requirements for the Space-by-Space Method.

²⁶⁹ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

²⁷⁰ Optimal Energy, Inc. (2008). Non-Electric Benefits Analysis Update. Memo Prepared for NSTAR.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
All	NC	1.00	1.00	1.07	0.80	0.73	custom	custom

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Energy and demand RRs derived from impact evaluation of National Grid 2008 custom lighting installations²⁷¹; final realization rates developed in 2008 custom program analysis study.²⁷²

Coincidence Factors

CFs are custom calculated based on site-specific information.

 ²⁷¹ KEMA, Inc. (2009). National Grid USA 2008 Custom Lighting Impact Evaluation, Final Report. Prepared for National Grid.
 ²⁷² KEMA, Inc. (2009). Sample Design and Impact Evaluation Analysis of the 2008 Custom Program. Prepared for National Grid; Table 19.

Lighting – Lighting Systems

Measure Overview

Description: This measure promotes the installation of efficient lighting including, but not limited to, efficient fluorescent lamps, ballasts, and fixtures, solid state lighting, and efficient high intensity discharge (HID) lamps, ballasts, and fixtures.
Primary Energy Impact: Electric
Secondary Energy Impact: Gas, Oil
Non-Energy Impact: O&M
Sector: Commercial & Industrial
Market: Lost Opportunity, Retrofit
End Use: Lighting
Program: C&I New Construction & Major Renovation, C&I Large Retrofit, C&I Small Retrofit

Algorithms for Calculating Primary Energy Impact

$$\Delta kWh = \left[\sum_{i=1}^{n} \left(\frac{Count_{i} * Watts_{i}}{1000}\right)_{BASE} - \sum_{j=1}^{m} \left(\frac{Count_{j} * Watts_{j}}{1000}\right)_{EE}\right] (Hours)$$
$$\Delta kW = \sum_{i=1}^{n} \left(\frac{Count_{i} * Watts_{i}}{1000}\right)_{BASE} - \sum_{j=1}^{m} \left(\frac{Count_{j} * Watts_{j}}{1000}\right)_{EE}$$

Where:

n	=	Total number of fixture types in baseline or pre-retrofit case
m	=	Total number of installed fixture types
Count _i	=	Quantity of existing fixtures of type i (for lost-opportunity, $Count_i = Count_i$).
Watts _i	=	Existing fixture or baseline wattage for fixture type i
Count _j	=	Quantity of efficient fixtures of type j.
Watts	=	Efficient fixture wattage for fixture type j.
1000	=	Conversion factor: 1000 watts per kW.
Hours	=	Lighting annual hours of operation.

Note on HVAC system interaction: Additional Electric savings from cooling system interaction are included in the calculation of adjusted gross savings for Lighting Systems projects. The HVAC interaction adjustment factor is determined from lighting project evaluations and is included in the energy realization rates and demand coincidence factors and realization rates.

Baseline Efficiency

For large retrofit installations, the baseline efficiency case is project-specific and is determined using actual fixture counts from the existing space. Existing fixture wattages are provided in the MassSAVE Retrofit Lighting Wattage Tables.²⁷³ For lost opportunity installations, the baseline efficiency case is determined using assumed baseline wattages for each of the installed fixtures.²⁷⁴ Small retrofit installations use the exact wattages and fixture counts from the existing space.

²⁷³ MassSave (2010). C&I Retrofit Lighting Wattage Tables.

²⁷⁴ MassSave (2010). C&I New Construction Lighting Baseline Wattage Tables.

High Efficiency

For both large new construction and retrofit installations, the high efficiency case is project-specific and is determined using actual fixture counts for the project and the MassSave Wattage Tables.²⁷⁵ Small retrofit installations use the exact wattages and fixture counts from the existing space.

Hours

The annual hours of operation for lighting systems are site-specific and should be determined on a caseby-case basis.

Measure Life

	Measure Life ²⁷⁶		
Equipment Type	Retrofit	Lost Opportunity	
Bulb – CFL screw base	5 years	N/A	
Fluorescent Fixture	13 years	15 years	
Hardwired CFL	13 years	15 years	
HID (interior and exterior)	13 years	15 years	
LED Lighting Fixtures	13 years	15 years	
LED Integral Replacement Lamps	13 years	15 years	
LED Low Bay – Garage & Canopy Fixtures	13 years	15 years	

Secondary Energy Impacts

Heating energy will be increased due to reduced lighting waste heat. This impact is estimated as an average impact in heating fossil fuel consumption per unit of energy saved.

Measure	Energy Type	Savings ²⁷⁷
Interior Lighting	C&I Gas Heat	-0.0003649 MMBtu/kWh
Interior Lighting	Oil	-0.0007129 MMBtu/kWh

Non-Energy Impacts

Annual non-energy benefits are claimed due to the reduced operation and maintenance costs associated with the longer measure lived of lamps and ballasts as compared to the base or pre-retrofit case. See Table 20 for values.

Benefit Type	Description	Savings	Notes
Annual Non- Resource	Annual O&M dollars saved due to avoided incandescent bulbs and labor	\$OM/Fixture	

²⁷⁵ MassSave (2010). C&I New Construction Lighting Wattage Tables AND MassSave (2010). C&I Retrofit Lighting Wattage Tables.

²⁷⁶ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1 AND GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group; Table 2 277 Ontimel Engran Law (2000) 21

Optimal Energy, Inc. (2008). Non-Electric Benefits Analysis Update. Memo Prepared for NSTAR.

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
All	NC	1.00	1.00	1.02	0.97	0.97	0.98	0.73
All	Large Retrofit	1.00	1.00	1.04	1.03	1.03	0.89	0.63
Screw-in CFLs	Small Retrofit	1.00	0.87	1.08	0.99	0.99	0.79	0.39
All (except screw in CFLs)	Small Retrofit	1.00	1.00	1.08	0.99	0.99	0.79	0.39

Impact Factors for Calculating Adjusted Gross Savings

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors. with one exception: 0.874 for screw-in CFLs installed through the C&I Small Retrofit program based on 1996 savings persistence study.²⁷⁸

Realization Rates

New Construction & Major Renovation Commercial

 Energy and demand RRs from impact evaluation of National Grid's 2007 Design 2000plus (New Construction) Lighting installations.²⁷⁹ Demand RR is the connected demand RR; energy RR includes connected demand RR, hours of use RR and HVAC Interactive adjustment.

C&I Large Retrofit

Energy RR is from impact evaluation of National Grid's 2007 Energy Initiative (Large Retrofit) Lighting program.²⁸⁰ Energy RR is the ratio measured electric energy savings to gross estimates of electric energy savings, and includes electric HVAC interaction adjustment by default. Demand RRs are from impact evaluation of National Grid's 2003 Energy Initiative Lighting program.²⁸¹ Demand RR is the connected demand RR.

C&I Small Retrofit

- Energy RRs from statewide impact evaluation of 2010 Small Business Services programs.²⁸²
- Demand RRs are connected demand RRs, from statewide impact evaluation of 2010 Small Business Services programs.²⁸³

Coincidence Factors

New Construction & Major Renovation Commercial

Coincidence Factors are based on a study of National Grid's 2007 Design 2000*plus* Lighting subprogram.²⁸⁴ Lighting coincidence factors include HVAC interactive effects.

<u>C&I Large Retrofit</u>

²⁷⁸ HEC, Inc. (1996). Final Report for New England Power Service Company Persistence of Savings Study. Prepared for NEPSCo.

²⁷⁹ KEMA (2009). *Design 2000plus Lighting Hours of Use and Load Shape Measurement Study*. Prepared for National Grid.

²⁸⁰ Summit Blue Consulting, LLC. (2008). Large *Commercial and Industrial Retrofit Program Impact Evaluation* 2007. Prepared for National Grid.

²⁸¹ RLW Analytics (2004). 2003 Energy Initiative "EI" Lighting Impact Evaluation Final Report. Prepared for National Grid.

 ²⁸² The Cadmus Group, ERS. (2011). *Non-Controls Lighting Evaluation for the Massachusetts Small Commercial Direct Install Program - Fourth Draft*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council. Study 19 in the 2010 Massachusetts Electric Energy Efficiency Annual Report.
 ²⁸³ Ibid.

²⁸⁴ KEMA, Inc. (2009). *Design 2000plus Lighting Hours of Use and Load Shapes Measurement Study*. Prepared for National Grid.

Lighting coincidence Factors are based on a NEEP regional C&I Lighting Loadshape study. Coincidence factors include HVAC interactive effects.²⁸⁵

C&I Small Retrofit

Summer Coincidence Factor is based on a NEEP regional C&I Lighting Loadshape study.²⁸⁶ Winter Coincidence Factor is based on statewide impact evaluation of the 2010 Small Business Services programs.²⁸⁷ Coincidence factors include HVAC interactive effects.

²⁸⁵ KEMA, Inc. (2011). C&I Lighting Loadshape Project. Prepared for NEEP Regional EM&V Forum. Study 32 in the 2010 Massachusetts Electric Energy Efficiency Annual Report.

²⁸⁶ Ibid.

²⁸⁷ The Cadmus Group, ERS. (2011). *Non-Controls Lighting Evaluation for the Massachusetts Small Commercial Direct Install Program - Fourth Draft*. Prepared for Massachusetts Joint Utilities. Study 19 in the 2010 Massachusetts Electric Energy Efficiency Annual Report.

Lighting – Lighting Controls

Measure Overview

Description: This measure promotes the installation of lighting controls in both lost-opportunity and retrofit applications. Promoted technologies include occupancy sensors and daylight dimming controls. **Primary Energy Impact:** Electric

Secondary Energy Impact: Electric Secondary Energy Impact: Heating energy (non-electric) Non-Energy Impacts: O&M Sector: Commercial & Industrial Market: Lost Opportunity, Retrofit End Use: Lighting Program: C&I New Construction & Major Renovation, C&I Large Retrofit, C&I Small Retrofit

Algorithms for Calculating Primary Energy Impact

$\Delta kWh = (Controlled \ kW)(Hours_{BASE} - Hours_{EE})$)
$\Delta kW = (Controlled \ kW)$	

Where:		
Controlled kW	=	Controlled fixture wattage
Hours _{BASE}	=	Total annual hours that the connected Watts operated in the pre-retrofit
		case (retrofit installations) or would have operated with code-compliance
		controls (new construction installations).
Hours _{EE}	=	Total annual hours that the connect Watts operate with the lighting
		controls implemented.

Note on HVAC system interaction: Additional Electric savings from cooling system interaction are included in the calculation of adjusted gross savings for Lighting Systems projects. The HVAC interaction adjustment factor is determined from lighting project evaluations and is included in the energy realization rates and demand coincidence factors and realization rates.

Baseline Efficiency

The baseline efficiency case assumes no controls (retrofit) or code-compliant controls (new construction).

High Efficiency

The high efficiency case involves lighting fixtures connected to controls that reduce the pre-retrofit or baseline hours of operation.

Hours

The annual hours of reduction for lighting controls are site-specific and should be determined on a caseby-case basis.

Measure Life

	Me	easure Life ²⁸⁸
Measure	Retrofit	Lost Opportunity
Occupancy Sensors	9 years	10 years
Daylight Dimming	9 years	10 years

Secondary Energy Impacts

Heating energy will be increased due to reduced lighting waste heat.

Measure	Energy Type	Savings ²⁸⁹
Interior Lighting	C&I Gas Heat	-0.0003649 MMBtu/kWh
Interior Lighting	Oil	-0.0007129 MMBtu/kWh

Non-Energy Impacts

Annual non-energy benefits are claimed due to the reduced operation and maintenance costs associated with the longer measure lived of lamps and ballasts as compared to the base or pre-retrofit case. See Table 20 for values.

Benefit Type	Description	Savings	Notes
Annual Non-	Annual O&M dollars saved due to avoided incandescent	\$OM/Fixture	CFL Fixtures
Resource	bulbs and labor		only

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Occupancy Sensors	NC, Large Retrofit	1.00	1.00	0.76	0.96	0.96	0.30	0.19
Daylight Dimming	NC, Large Retrofit	1.00	1.00	0.38	0.96	0.96	0.15	0
Occupancy Sensors	Small Retrofit	1.00	1.00	0.87	0.94	0.94	0.35	0.28

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

RRs from National Grid impact evaluation of C&I lighting controls installations.²⁹⁰

 ²⁸⁸ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1
 ²⁸⁹ Optimal Energy, Inc. (2008). *Non-Electric Benefits Analysis Update*. Memo Prepared for NSTAR.

²⁹⁰ RLW Analytics (2007). Lighting Controls Impact Evaluation Final Report, 2005 Energy Initiative, Design 2000plus and Small Business Services Program. Prepared for National Grid.

<u>Coincidence Factors</u> CFs from National Grid impact evaluation C&I lighting controls installations.²⁹¹

²⁹¹ Ibid.

Lighting – Freezer/Cooler LEDs

Measure Overview

Description: Installation of LED lighting in freezer and/or cooler cases. The LED lighting consumes less energy, and results in less waste heat which reduces the cooling/freezing load. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Lighting Program: C&I Small Retrofit

Algorithms for Calculating Primary Energy Impact

$$\Delta kWh = \Delta kWh_{LED} + \Delta kWh_{Heat}$$

$$\Delta kWh_{LED} = \sum_{i=1}^{n} (Count_{i} * kW_{i} * Hours_{i})_{BASE} - \sum_{i=1}^{m} (Count_{j} * kW_{j} * Hours_{j})_{LED}$$

$$\Delta kWh_{Heat} = \Delta kWh_{LED} * 0.28 * Eff_{RS}$$

$$\Delta kW = \Delta kWh / Hours_{j}$$

Where:

where.		
ΔkWh_{LED}	=	Reduction in lighting energy
ΔkWh_{Heat}	=	Reduction in refrigeration energy due to reduced heat loss from the lighting
		fixtures
Ν	=	Total number of lighting fixture types in the pre-retrofit case
Μ	=	Total number of lighting fixture types in the post-retrofit case
Count _i	=	Quantity of type i fixtures in the pre-retrofit case
kWi	=	Power demand of pre-retrofit lighting fixture type i (kW/fixture)
Hours _i	=	Pre-retrofit annual operating hours of fixture type i
Count _i	=	Quantity of type j fixtures in the pre-retrofit case
kWi	=	Power demand of lighting fixture type j (kW/fixture)
Hours	=	Post-retrofit annual operating hours of fixture type j
0.28	=	Unit conversion between kW and tons calculated as 3,413 Btuh/kW divided
		by 12,000 Btuh/ton
Eff _{RS}	=	Efficiency of typical refrigeration system: 1.3 kW/ton ²⁹²

Baseline Efficiency

The baseline efficiency case is the existing lighting fixtures in the cooler or freezer cases.

²⁹² RLW Analytics (2007). Small Business Services Custom Measure Impact Evaluation. Prepared for National Grid.

High Efficiency

The high efficiency case is the installation of LED lighting fixtures on the cooler or freezer cases, replacing the existing lighting fixtures.

Hours

Annual hours of operation are determined on a case-by-case basis and are typically 8760 hours/year. Post-retrofit operating hours are assumed to be the same as pre-retrofit hours unless lighting occupancy sensors were also implemented.

Measure Life

The measure life is 13 years.²⁹³

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Freezer/Cooler LEDs	Small Retrofit	1.00	1.00	1.00	1.00	1.00	1.07	1.15

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

RRs for small retrofit installations based on impact evaluation of 2005 small retrofit custom measures.²⁹⁴

Coincidence Factors

CFs for small retrofit installations based on impact evaluation of 2005 small retrofit custom measures.²⁹⁵

²⁹³ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities.

 ²⁹⁴ RLW Analytics (2007). Small Business Services Custom Measure Impact Evaluation. Prepared for National Grid.
 ²⁹⁵ Ibid.

HVAC – Single-Package and Split System Unitary Air Conditioners

Measure Overview

Description: This measure promotes the installation of high efficiency unitary air conditioning equipment in lost opportunity applications. Air conditioning (AC) systems are a major consumer of electricity and systems that exceed baseline efficiencies can save considerable amounts of energy. This measure applies to air, water, and evaporatively-cooled unitary AC systems, both single-package and split systems.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

For units with cooling capacities less than 65 kBtu/h:

$$\Delta kWh = (kBtu / h) \left(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}} \right) (EFLH_{Cool})$$
$$\Delta kW = (kBtu / h) \left(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}} \right)$$

For units with cooling capacities equal to or greater than 65 kBtu/h:

$$\Delta kWh = (kBtu / h) \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right) (EFLH_{Cool})$$
$$\Delta kW = (kBtu / h) \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right)$$

Where:

ΔkWh	=	Gross annual kWh savings from the measure.
ΔkW	=	Gross connected kW savings from the measure.
kBtu/h	=	Capacity of the cooling equipment in kBtu per hour (1 ton of cooling capacity equals 12 kBtu/h)
SEER _{BASE}	=	Seasonal Energy Efficiency Ratio of the baseline equipment. See Table 1 for values.
SEER _{EE}	=	Seasonal Energy Efficiency Ratio of the energy efficient equipment.
EFLH _{Cool}	=	Cooling equivalent full load hours. See Hours section below.
EER _{BASE}	=	Energy Efficiency Ratio of the baseline equipment. See Table 1 for values. Since IECC 2009 does not provide EER requirements for air-cooled air conditioners < 65 kBtu/h, assume the following conversion from SEER to EER: EER≈SEER/1.1.

 EER_{EE} = Energy Efficiency Ratio of the energy efficient equipment. For air-cooled air conditioners < 65 kBtu/h, if the actual EER_{EE} is unknown, assume the following conversion from SEER to EER: $EER \approx SEER/1.1$.

Baseline Efficiency

Table 1 details the specific efficiency baselines by equipment type and capacity.

Equipment Type	Size Category	Subcategory or Rating Condition	Baseline Efficiency
Air conditioners, air		Split system and single	10 SEER
cooled	<65,000 Btu/h	system	
	≥65,000 Btu/h and	Split system and single	8.92 EER
	<135,000 Btu/h	package	
		Split system and single	8.6 EER
	≥135,000 Btu/h	package	
Air conditioners,			9.5 EER
Water and		Split system and single	
evaporatively cooled	≥240,000 Btu/h	package	

High Efficiency

The high efficiency case assumes the HVAC equipments meets or exceeds the Consortium for Energy Efficiency's (CEE) specification. This specification results in cost-effective energy savings by specifying higher efficiency HVAC equipment while ensuring that several manufacturers produce compliant equipment. The CEE specification is reviewed and updated annually to reflect changes to the ASHRAE and IECC energy code baseline as well as improvements in the HVAC equipment technology. The minimum efficiency requirements for program participation are outlined on the Cool Choice rebate forms. Equipment efficiency is the rated efficiency of the installed equipment for each project.

Hours

National Grid uses 777 cooling hours for all units.²⁹⁶

Measure Life

The measure life is 15 years.²⁹⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

²⁹⁶ SAIC (1998). Impact Evaluation of the Design 2000plus Unitary HVAC Program. Prepared for National Grid.

²⁹⁷ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Unitary AC	NC	1.00	1.00	1.25	0.90	1.00	0.44	0.00

In-Service Rates

All installations have 100% in service rate since all programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Energy and demand RR based on 2011 NEEP load shape study.²⁹⁸

Coincidence Factors

CFs from 1998 unitary HVAC study.²⁹⁹

²⁹⁸ KEMA (2011). *C&I Unitary HVAC Load Shape Project Final Report.* Prepared for the Regional Evaluation, Measurement and Verification Forum. Study 33 in the 2010 Massachusetts Electric Energy Efficiency Annual Report. AND The Fleming Group (1994). Persistence of Commercial/Industrial Non-Lighting Measures, Volume 2, Energy Efficient HVAC and Process Cooling Equipment. Prepared for New England Power Service Company. RRs found as the ratio between EFLH reported in each study. RR calculated in order to maintain consistency with other PAs. New EFLHs from NEEP study to be used next year.
²⁹⁹ SAIC (1998). *Impact Evaluation of the Design 2000plus Unitary HVAC Program.* Prepared for National Grid

HVAC – Single Package or Split System Heat Pump Systems

Measure Overview

Description: This measure applies to the installation of high-efficiency air cooled, water source, ground water source, and ground source heat pump systems. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

For air cooled units with cooling capacities less than 65 kBtu/h:

$$\Delta kWh = (kBtu / h) \left(\frac{1}{SEER_{BASE}} - \frac{1}{SEER_{EE}} \right) (EFLH_{COOL}) (HF)$$
$$\Delta kW = (kBtu / h) \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right)$$

For all water source, groundwater source, ground source units, and air cooled units with cooling capacities equal to, or greater than, 65 kBtu/h:

$$\Delta kWh = (kBtu / h) \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right) (EFLH_{COOL})$$
$$\Delta kW = (kBtu / h) \left(\frac{1}{EER_{BASE}} - \frac{1}{EER_{EE}} \right)$$

Where:		
∆kWh	=	Gross annual kWh savings from the measure.
kBtu/h ³⁰⁰	=	Capacity of the cooling equipment in kBtu per hour (1 ton of cooling
		capacity equals 12 kBtu/h).
SEER _{BASE}	=	Seasonal Energy Efficiency Ratio of the baseline equipment. See Baseline
		Efficiency section for values.
SEER _{EE}	=	Seasonal Energy Efficiency Ratio of the energy efficient equipment.
EFLH _{COOL}	=	Cooling mode equivalent full load hours.
HF	=	Heating Factor to account for savings in heating mode for air cooled heat
		pumps: 2.39 ³⁰¹

 $^{^{300}}$ For equipment with cooling capacities less than 65 kBtu/h, it is assumed that the heating capacity and cooling capacity are equal.

EER _{BASE}	=	Energy Efficiency Ratio of the baseline equipment. See Baseline Efficiency
		section for values. Since IECC 2009 does not provide EER requirements
		for air-cooled heat pumps < 65 kBtu/h, assume the following conversion
		from SEER to EER: EER \approx SEER/1.1.
EER _{EE}	=	Energy Efficiency Ratio of the energy efficient equipment. For air-cooled
		air conditioners < 65 kBtu/h, if the actual EER _{EE} is unknown, assume the
		following conversion from SEER to EER: EER≈SEER/1.1.

Heating Capacity Conversion Factors:

Air Source HPs

Heating Capacity = Cooling Capacity * 13,900/12,000 (Ratio of heat produced in the heating mode divided by cooling produced in cooling mode)

Water/Ground Source HPs Heating Capacity = Cooling Capacity * COP/EER (converts the rated cooling output to the rated heating output)

Baseline Efficiency

National Grid specified 10 SEER for all air cooled heat pumps and 11.5 SEER for all water source heat pumps.

High Efficiency

The high efficiency case assumes the HVAC equipments meets or exceeds the Consortium for Energy Efficiency's (CEE) specification. This specification results in cost-effective energy savings by specifying higher efficiency HVAC equipment while ensuring that several manufacturers produce compliant equipment. The CEE specification is reviewed and updated annually to reflect changes to the ASHRAE and IECC energy code baseline as well as improvements in the HVAC equipment technology.

The minimum efficiency requirements for program participation are outlined on the Cool Choice rebate forms. Equipment efficiency is the rated efficiency of the installed equipment for each project.

Hours

National Grid uses default hours of 777 hours³⁰² for air cooled heat pumps and 1029 hours³⁰³ for water cooled heat pumps.

Measure Life

The measure life is 15 years.³⁰⁴

³⁰¹ The Fleming Group (1994). Persistence of Commercial/Industrial Non-Lighting Measures, Volume 2, Energy Efficient HVAC and Process Cooling Equipment. Prepared for New England Power Service Company

³⁰² SAIC (1998). Impact Evaluation of the Design 2000plus Unitary HVAC Program. Prepared for National Grid.

³⁰³ The Fleming Group (1994). Persistence of Commercial/Industrial Non-Lighting Measures, Volume 2, Energy Efficient HVAC and Process Cooling Equipment. Prepared for New England Power Service Company

³⁰⁴ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heat Pumps	NC	1.00	1.00	1.25	0.90	1.00	0.44	0.00

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Energy and demand RR based on 2011 NEEP load shape study.³⁰⁵

Coincidence Factors

CFs from 1998 unitary HVAC study.³⁰⁶

³⁰⁵ KEMA (2011). *C&I Unitary HVAC Load Shape Project Final Report.* Prepared for the Regional Evaluation, Measurement and Verification Forum. Study 33 in the 2010 Massachusetts Electric Energy Efficiency Annual Report. AND The Fleming Group (1994). Persistence of Commercial/Industrial Non-Lighting Measures, Volume 2, Energy Efficient HVAC and Process Cooling Equipment. Prepared for New England Power Service Company. RRs found as the ratio between EFLH reported in each study. RR calculated in order to maintain consistency with other PAs. New EFLHs from NEEP study to be used next year. ³⁰⁶ SAIC (1998). *Impact Evaluation of the Design 2000plus Unitary HVAC Program.* Prepared for National Grid

HVAC – Dual Enthalpy Economizer Controls (DEEC)

Measure Overview

Description: The measure is to upgrade the outside-air dry-bulb economizer to a dual enthalpy economizer. The system will continuously monitor the enthalpy of both the outside air and return air. The system will control the system dampers adjust the outside quantity based on the two readings.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity, Retrofit End Use: HVAC Program: C&I New Construction and Major Renovation

Algorithms for Calculating Primary Energy Impacts

$$\Delta kWh = (kBtu / h) \left(\frac{1 Ton}{12 kBtu / h}\right) (SAVE_{kWh})$$
$$\Delta kW = (kBtu / h) \left(\frac{1 Ton}{12 kBtu / h}\right) (SAVE_{kW})$$

Where:

kBtu/h	=	Capacity of the cooling equipment in kBtu per hour (1 ton of cooling capacity equals
		12 kBtu/h).
SAVE _{kWh}	=	Average annual kWh reduction per ton of cooling capacity: 289 kWh/ton ³⁰⁷
SAVE _{kW}	=	Average kW reduction per ton of cooling capacity: 0.289 kW/ton ³⁰⁸

Baseline Efficiency

The baseline efficiency case for this measure assumes the relevant HVAC equipment is operating with a fixed dry-bulb economizer.

High Efficiency

The high efficiency case is the installation of an outside air economizer utilizing two enthalpy sensors, one for outdoor air and one for return air.

Hours

Not applicable.

³⁰⁷ Patel, Dinesh (2001). Energy Analysis: Dual Enthalpy Control. Prepared for NSTAR.

³⁰⁸ Ibid.

Measure Life

The measure life is 10 years for lost-opportunity applications.³⁰⁹ The measure life is 7 years for retrofit installations.³¹⁰

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
DEEC	NC	1.00	1.00	1.00	1.00	1.00	0.40	0.00

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

RRs are 1.0 since there have been no impact evaluations of the prescriptive savings calculations.

Coincidence Factors

CFs from 1998 unitary HVAC study.³¹¹

³⁰⁹ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1 ³¹⁰ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group; Table 2. ³¹¹ SAIC (1998). *Impact Evaluation of the Design 2000plus Unitary HVAC Program*. Prepared for National Grid

HVAC – Demand Control Ventilation (DCV)

Measure Overview

Description: The measure, offered through the CoolChoice program, is to control quantity of outside air to an air handling system based on detected space CO_2 levels. The installed systems monitor the CO_2 in the spaces or return air and reduce the outside air use when possible to save energy while meeting indoor air quality standards.

Primary Energy Impact: Electric Secondary Energy Impact: Gas, Oil Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Program: C&I New Construction and Major Renovation

Algorithms for Calculating Primary Energy Impacts

$$\Delta kWh = (kBtu / h) \left(\frac{1 Ton}{12 kBtu / h}\right) (SAVE_{kWh})$$
$$\Delta kW = (kBtu / h) \left(\frac{1 Ton}{12 kBtu / h}\right) (SAVE_{kW})$$

Where:

() Here.		
kBtu/h	=	Capacity of the cooling equipment in kBtu per hour
SAVE _{kWh}	=	Average annual kWh reduction per ton of cooling capacity: 170 kWh/ton ³¹²
SAVE _{kW}	=	Average kW reduction per ton of cooling capacity: 0.15 kW/ton ³¹³

Baseline Efficiency

The baseline efficiency case for this measure assumes the relevant HVAC equipment has no ventilation control.

High Efficiency

The high efficiency case is the installation of an outside air intake control based on CO₂ sensors.

Hours

The operating hours are site-specific for custom savings calculations.

Measure Life

The measure life is 10 years.³¹⁴

 ³¹² Keena, Kevin (2008). Analysis of CO2 Control Energy Savings on Unitary HVAC Units. Prepared for National Grid.
 ³¹³ Ibid.

Secondary Energy Impacts

Gas and oil heat impacts are counted for DCV measures for reduction in space heating. If these impacts are not custom calculated, they can be approximated using the interaction factors described below:

Measure	Energy Type	Savings ³¹⁵				
DCV	C&I Gas Heat	0.001277 MMBtu/kWh				
DCV	Oil	0.002496 MMBtu/kWh				

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	$\boldsymbol{R}\boldsymbol{R}_{E}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
DCV	NC	1.00	1.00	1.00	1.00	1.00	1.00	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

RRs based on engineering estimates.

Coincidence Factors

CFs based on engineering estimates.

³¹⁴ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1. Measure life is assumed to be the same as Enthalpy Economizer. ³¹⁵ Optimal Energy, Inc. (2008). *Non-Electric Benefits Analysis Update*. Memo Prepared for NSTAR.

HVAC – ECM Fan Motors

Measure Overview

Description: This measure is offered through the Cool Choice program and promotes the installation of electronically commutated motors (ECMs) on fan powered terminal boxes, fan coils, and HVAC supply fans on small unitary equipment. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Program: C&I New Construction & Major Renovation

Algorithms for Calculating Electric Energy Impact

 $\Delta kWh = (Design CFM)(Box Size Factor)(\% Flow_{ANNUAL})(Hours)$ $\Delta kW_{SP} = (Design CFM)(Box Size Factor)(\% Flow_{SP})$ $\Delta kW_{WP} = (Design CFM)(Box Size Factor)(\% Flow_{WP})$

Where:

Design CFM	=	Capacity of the VAV box in cubic feet per minute
Box Size Factor	=	Savings factor in Watts/CFM. See Table 2 for values.
%Flow _{annual}	=	Average % of design flow over all operating hours. See Table 2 for
		values.
%Flow sp	=	Average % of design flow during summer peak period. See Table 2 for
		values.
%Flow _{WP}	=	Average % of design flow during summer peak period. See Table 2 for
		values.
Hours	=	

Table 2. ECNI Fail Motor Savings Factors									
Factor	Box Size	Value	Units						
Box Size Factor	< 1000 CFM	0.32	Watts/CFM						
Box Size Factor	$\geq 1000 \text{ CFM}$	0.21	Watts/CFM						
%Flow _{ANNUAL}	All	0.52	-						
%Flow sp	All	0.63	-						
%Flow _{WP}	All	0.33	-						

Table 2: ECM Fan Motor Savings Factors ³¹⁶

Baseline Efficiency

The baseline efficiency case for this measure assumes the VAV box fans are powered by a single speed fractional horsepower permanent split capacitor (PSC) induction motor.

³¹⁶ Factors based on engineering analysis developed at National Grid.

High Efficiency

The high efficiency case must have a motor installed on new, qualifying HVAC equipment.

Hours

The annual operating hours for ECMs on VAV box fans are site-specific and should be determined on a case-by-case basis.

Measure Life

The measure life is 20 years for lost-opportunity applications.³¹⁷

Algorithms for Calculating Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
ECM Fan Motors	NC	1.00	1.00	1.00	1.00	1.00	1.00	1.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

RRs based on engineering estimates

Coincidence Factors

CFs based on engineering estimates.

³¹⁷ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

HVAC – Energy Management System

Measure Overview

Description: The measure is the installation of a new building energy management system (EMS) or the expansion of an existing energy management system for control of non-lighting electric and gas end-uses in an existing building on existing equipment.
Primary Energy Impact: Electric
Secondary Energy Impact: Gas, Oil
Non-Energy Impact: None
Sector: Commercial & Industrial
Market: Retrofit
End Use: HVAC
Program: C&I New Construction & Major Renovation, C&I Large Retrofit

Algorithms for Calculating Primary Energy Impacts

Gross energy and demand savings for energy management systems (EMS) are custom calculated using National Grid's EMS savings calculation tools. The tool is used to calculate energy and demand savings based on project-specific details including hours of operation, HVAC system equipment and efficiency and points controlled.³¹⁸

Baseline Efficiency

The baseline for this measure assumes the relevant HVAC equipment has no control.

High Efficiency

The high efficiency case is the installation of a new EMS or the expansion of an existing EMS to control additional non-lighting electric or gas equipment. The EMS must be installed in an existing building on existing equipment.

Hours

Not applicable.

Measure Life

For lost-opportunity applications, the measure life is 15 years.³¹⁹ For retrofit applications, the measure life is 10 years.³²⁰

³¹⁸ Detailed descriptions of the EMS Savings Calculation Tools are included in the TRM Library under the "C&I Spreadsheet Tools" folder.

³¹⁹ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1. ³²⁰ Ibid.

Secondary Energy Impacts

Heating Impacts: Gas and oil heat impacts are counted for EMS measures for reduction in space heating. If the heating system impacts are not calculated in the EMS savings calculation tool, they can be approximated using the interaction factors described below:

Measure	Energy Type	Savings ³²¹
EMS	C&I Gas Heat	0.001277 MMBtu/∆kWh
EMS	Oil	0.002496 MMBtu/∆kWh

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
EMS	Large Retrofit	1.00	1.00	1.04	1.03	1.03	custom	custom

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

RRs derived from a 1994 study of HVAC and process cooling equipment.³²²

Coincidence Factor

CFs are custom calculated.

³²¹ Optimal Energy, Inc. (2008). *Non-Electric Benefits Analysis Update*. Memo Prepared for NSTAR.

³²² The Fleming Group (1994). Persistence of Commercial/Industrial Non-Lighting Measures, Volume 3, Energy Management Control Systems. Prepared for New England Power Service Company.

HVAC – High Efficiency Chiller

Measure Overview

Description: This measure promotes the installation of efficient water-cooled and air-cooled water chilling packages for comfort cooling applications. Eligible chillers include air-cooled, water cooled rotary screw and scroll, and water cooled centrifugal chillers for single chiller systems or for the lead chiller only in multi-chiller systems.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impacts

Air-Cooled Chillers:

$$\Delta kWh = (Tons) \left(\frac{12}{EER_{BASE}} - \frac{12}{EER_{EE}} \right) (Hours)$$

$$\Delta kW = \left(Tons\right) \left(\frac{12}{EER_{BASE}} - \frac{12}{EER_{EE}}\right) (LF)$$

Water-Cooled Chillers:

 $\Delta kWh = (Tons)(kW / ton_{BASE} - kW / ton_{EE})(Hours)$

$$\Delta kW = (Tons)(kW / ton_{BASE} - kW / ton_{EE})(LF)$$

Where:

Tons	=	Rated capacity of the cooling equipment
EER _{BASE}	=	Energy Efficiency Ratio of the baseline equipment. See Table 3 for values.
EER _{EE}	=	Energy Efficiency Ratio of the efficient equipment. Site-specific.
kW/ton _{BASE}	=	Energy efficiency rating of the baseline equipment. See Table 3 for values.
kW/ton _{EE}	=	Energy efficiency rating of the efficient equipment. Site-specific.
Hours	=	Equivalent full load hours for chiller operation
LF	=	Load Factor
kW/ton _{BASE} kW/ton _{EE} Hours	= = =	Energy efficiency rating of the baseline equipment. See Table 3 for values. Energy efficiency rating of the efficient equipment. Site-specific. Equivalent full load hours for chiller operation

Baseline Efficiency

The baseline efficiencies used in 2010 are a 10% reduction of the minimum efficiency requirements. Table 3 details the specific efficiency requirements and baseline efficiencies by equipment type and capacity.

			Minir Effici		Baseline Efficiency	
Equipment Type	Size Category (Tons)	Units	Full Load	IPLV	Full Load	IPLV
Air-cooled chillers	< 150	EER	11.5	10.5	10.45	9.55
XX7 (1 1 1 (1 1	\geq 75 and < 150	kW/ton	0.609	0.711	0.677	0.790
Water cooled, electrically operated, positive displacement	\geq 150 and < 300	kW/ton	0.565	0.646	0.628	0.718
(rotary screw and scroll)	≥ 300	kW/ton	0.515	0.575	0.572	0.639
Water cooled, electrically	\geq 150 and < 300	kW/ton	0.536	0.57	0.596	0.633
operated, centrifugal	\geq 300 and < 600	kW/ton	0.494	0.519	0.549	0.577

Table 3: Water Chilling	g Packages -	Minimum 1	Efficiency	Requirements ³²³
-------------------------	--------------	-----------	------------	------------------------------------

High Efficiency

The high efficiency scenario assumes water chilling packages that exceed the efficiency levels required by Massachusetts State Building Code and meet the minimum efficiency requirements as stated in the New Construction HVAC energy efficiency rebate forms. Energy and demand savings calculations are based on actual equipment efficiencies should be determined on a case-by-case basis.

Hours

Hours are specified by equipment type as shown in the table below.³²⁴

	Size Category	EFLI	I
Equipment Type	(Tons)	Full Load	IPLV
Air-cooled chillers	< 150	698	698
Water cooled, electrically	\geq 75 and < 150	1086	1038
operated, positive	\geq 150 and < 300	1086	1038
displacement (rotary screw and scroll)	≥ 300	1620	2066
Water cooled, electrically	\geq 150 and < 300	1086	1038
operated, centrifugal	\geq 300 and < 600	1620	2066

Measure Life

The measure life is 20 years.³²⁵

Secondary Energy Impacts

There are no secondary energy impacts counted for this measure.

³²³ DOE (2009). 2009 IECC Based Building Codes; Table 503.2.3(7): Water Chilling Packages, Efficiency Requirements - as of 1/1/2020 minimum efficiency values.

 ³²⁴ Staff estimates from 1994.
 ³²⁵ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Chillers	NC	1.00	1.00	1.04	1.00	1.00	1.00	0.00

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Energy RRs based on a 1994 study of HVAC and process cooling equipment.³²⁶

Coincidence Factors

CFs estimated based on 1993-1994 evaluation research and engineering estimates.

³²⁶ The Fleming Group (1994). Persistence of Commercial/Industrial Non-Lighting Measures, Volume 2, Energy Efficient HVAC and Process Cooling Equipment. Prepared for New England Power Service Company.

HVAC – Hotel Occupancy Sensors

Measure Overview

Description: The measure is to the installation of hotel occupancy sensors (HOS) to control packaged terminal AC units (PTACs) with electric heat, heat pump units and/or fan coil units in hotels that operate all 12 months of the year. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Program: C&I Large Retrofit

Algorithms for Calculating Primary Energy Impacts

Unit savings are deemed based on evaluation results:

 $\Delta kWh = SAVE_{kWh}$ $\Delta kW = SAVE_{kW}$

Where:

Unit	=	Installed hotel room occupancy sensor
SAVE _{kWh}	=	Average annual kWh reduction per unit: 1801 kWh ³²⁷
$SAVE_{kW}$	=	Average annual kW reduction per unit: 0.35 kW ³²⁸

Baseline Efficiency

The baseline efficiency case assumes the equipment has no occupancy based controls.

High Efficiency

The high efficiency case is the installation of controls that include (a) occupancy sensors, (b) window/door switches for rooms that have operable window or patio doors, and (c) set back to 65 F in the heating mode and set forward to 78 F in the cooling mode when occupancy detector is in the unoccupied mode. Sensors controlled by a front desk system are not eligible.

Hours

Not applicable.

Measure Life

For retrofit applications, the measure life is 10 years.³²⁹

³²⁸ Ibid.

³²⁷ MassSave (2010). Energy Analysis: Hotel Guest Occupancy Sensors.

Secondary Energy Impacts

There are no secondary energy impacts.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
HOS	Large Retrofit	1.00	1.00	1.00	1.00	1.00	0.30	0.70

In-Service Rates

All installations have 100% in service rate since all PAs programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

RRs based on engineering estimates.

Coincidence Factors

CFs based on engineering estimates.

³²⁹ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1; Measure life is assumed to be the same as for EMS retrofit measure.

HVAC – Programmable Thermostats

Measure Overview

Description: This measure involves the installation of a programmable thermostat for cooling and/or heating systems in spaces with either no or erratic existing control. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Program: C&I Small Retrofit

Algorithms for Calculating Primary Energy Impacts

 $\Delta kWh = (SQFT)(SAVE_{kWh})$ $\Delta kW = (SQFT)(SAVE_{kW})$

Where:

SQFT	=	Square feet of controlled space
SAVE _{kWh}	=	Average kW reduction per SQFT of controlled space. See Table 4.
$SAVE_{kW}$	=	Average annual kWh reduction per SQFT of controlled. See Table 4.

Table 4: Savings Factors (Save)³³⁰

Equipment Type	SAVE _{kWh} (kWh/SQFT)	SAVE _{kW} (kW/SQFT)
Cool Only No Existing Control	0.539	0.00
Cool Only Erratic Existing Control	0.154	0.00
Heat Only No Existing Control	0.418	0.00
Heat Only Erratic Existing Control	0.119	0.00
Cool and Heat No Existing Control	0.957	0.00
Cool and Heat Erratic Existing Control	0.273	0.00
Heat Pump No Existing Control	0.848	0.00
Heat Pump Erratic Existing Control	0.242	0.00

Baseline Efficiency

The baseline efficiency case includes spaces with either no or erratic heating and/or cooling control as indicated in the equipment type selection.

High Efficiency

The high efficiency case includes control of the space cooling and/or heating system as indicated in the equipment type selection.

³³⁰ Factors form National Grid tracking system.

Hours

Not applicable.

Measure Life

For retrofit applications, the measure life is 8 years.³³¹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Thermostats	Small Retrofit	1.00	1.00	1.00	1.00	1.00	0.00	0.00

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates RRs set to 100% based on no evaluations.

Coincidence Factors

CFs set to zero since no savings are expected during peak periods.

³³¹ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

Refrigeration – Door Heater Controls

Measure Overview

Description: Installation of controls to reduce the run time of door and frame heaters for freezers and walk-in or reach-in coolers. The reduced heating results in a reduced cooling load.³³² Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Program: C&I Small Retrofit

Algorithms for Calculating Primary Energy Impact

 $\Delta kWh = kW_{DH} * \% OFF * 8760$ $\Delta kW = kW_{DH} * \% OFF$

Where:

kW_{DH}	=	Total demand of the door heater, calculated as Volts * Amps / 1000
8760	=	Door heater annual run hours before controls
%OFF		Door heater Off time ³³³ : 46% for freezer door heaters or 74% for cooler door
		heaters)

Baseline Efficiency

The baseline efficiency case is a cooler or freezer door heater that operates 8,760 hours per year without any controls.

High Efficiency

The high efficiency case is a cooler or freezer door heater connected to a heater control system, which controls the door heaters by measuring the ambient humidity and temperature of the store, calculating the dewpoint, and using pulse width modulation (PWM) to control the anti-sweat heater based on specific algorithms for freezer and cooler doors. Door temperature is typically maintained about 5°F above the store air dewpoint temperature with the heaters operating at 80% (adjustable).³³⁴

Hours

Pre-retrofit hours are 8,760 hours per year. After controls are installed, the door heaters in freezers are on for an average 4,730.4 hours/year (46% off time) and the door heaters for coolers are on for an average 2,277.6 hours/year (74% off time).

³³² The assumptions and algorithms used in this section are specific to NRM products.

³³³ The value is an estimate by NRM based on hundreds of downloads of hours of use data from Door Heater controllers. These values are also supported by Select Energy (2004). *Cooler Control Measure Impact Spreadsheet User's Manual*. Prepared for NSTAR.

³³⁴ Select Energy (2004). Analysis of Cooler Control Energy Conservation Measures. Prepared for NSTAR.

Measure Life

The measure life for cooler and freezer door heater controls is 10 years.³³⁵

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Door Heater Control	Small Retrofit	1.00	1.00	1.13	1.00	1.00	1.00	1.46

In-Service Rates

All installations have 100% in service rate since all PAs' programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Energy RR based on staff estimates.

Coincidence Factors

CFs from the 1995 HEC study of walk-in cooler anti-sweat door heater controls.³³⁶

 ³³⁵ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
 ³³⁶ HEC, Inc. (1995). *Analysis of Door Master Walk-In Cooler Anti-Sweat Door Heater Controls Installed at Ten Sites in Massachusetts*. Prepared for NEPSCo; Table 9.

Refrigeration – Novelty Cooler Shutoff

Measure Overview

Description: Installation of controls to shut off a facility's novelty coolers for non-perishable goods based on pre-programmed store hours. Energy savings occur as coolers cycle off during facility unoccupied hours.³³⁷

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Program: C&I Small Retrofit

Algorithms for Calculating Primary Energy Impact

 $\Delta kWh = (kW_{NC}) (DC_{AVG}) (HoursOFF)$ $\Delta kW = 0$

Where:

ΔkW	=	0 since savings are assumed to occur during evening hours and are therefore not
		coincident with either summer or winter peak periods.
kW _{NC}	=	Power demand of novelty cooler calculated from equipment nameplate data and
		estimated 0.85 power factor ³³⁸
HoursOFF	=	Potential hours off per night, estimated as one less than the number of hours the store is
		closed per day
DC _{AVG}	=	Weighted average annual duty cycle ³³⁹

Baseline Efficiency

The baseline efficiency case is the novelty coolers operating 8,760 hours per year.

High Efficiency

The high efficiency case is the novelty coolers operating fewer than 8,760 hours per year since they are controlled to cycle each night based on pre-programmed facility unoccupied hours.

Hours

Energy and demand savings are based on the reduced operation hours of the cooler equipment. Hours reduced per day are estimated on a case-by-case basis, and are typically calculated as one less than the number of hours per day that the facility is closed each day.

³³⁷ The assumptions and algorithms used in this section are specific to NRM products.

³³⁸ Conservative value based on 15 years of NRM field observations and experience.

³³⁹ Ibid; the estimated duty cycles for Novelty Coolers are supported by Select Energy (2004). *Cooler Control Measure Impact Spreadsheet Users' Manual.* Prepared for NSTAR. The study gives a less conservative value than used by NRM.

Measure Life

The measure life is 10 years.³⁴⁰

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Novelty Cooler Shutoff	Small Retrofit	1.00	1.00	1.13	1.00	1.00	0.73	1.46

In-Service Rates

All installations have 100% in service rate since all PAs' programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Energy RR based on staff estimates.

Coincidence Factors

CFs from the 1995 HEC study of walk-in cooler anti-sweat door heater controls.³⁴¹

 ³⁴⁰ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
 ³⁴¹ HEC, Inc. (1995). *Analysis of Door Master Walk-In Cooler Anti-Sweat Door Heater Controls Installed at Ten Sites in Massachusetts*. Prepared for NEPSCo; Table 9.

Refrigeration – ECM Evaporator Fan Motors for Walk–in Coolers and Freezers

Measure Overview

Description: Installation of various sizes of electronically commutated motors (ECMs) in walkin coolers and freezers to replace existing evaporator fan motors.³⁴² Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Program: C&I Small Retrofit

Algorithms for Calculating Primary Energy Impact

 $\Delta kWh = \Delta kWh_{Fan} + \Delta kWh_{Heat}$ $\Delta kWh_{Fan} = kW_{Fan} * LRF *Hours$ $\Delta kWh_{Heat} = \Delta kWh_{Fan} * 0.28 * Eff_{RS}$ $\Delta kW = \Delta kWh / Hours$

Where:

ΔkWh_{Fan}	=	Energy savings due to increased efficiency of evaporator fan motor
ΔkWh_{Heat}	=	Energy savings due to reduced heat from the evaporator fans
kW_{Fan}	=	Power demand of evaporator fan calculated from equipment nameplate data
		and estimated 0.55 power factor/adjustment ³⁴³
LRF	=	Load reduction factor for motor replacement $(65\%)^{344}$
Hours	=	Annual fan operating hours.
0.28	=	Conversion factor between kW and tons: 3,413 Btuh/kW divided by 12,000
		Btuh/ton
Eff _{RS}	=	Efficiency of typical refrigeration system: 1.6 kW/ton ³⁴⁵

Baseline Efficiency

The baseline efficiency case is an existing evaporator fan motor.

High Efficiency

The high efficiency case is the replacement of existing evaporator fan motors with ECMs.

³⁴² The assumptions and algorithms used in this section are specific to NRM products.

³⁴³ Conservative value based on 15 years of NRM field observations and experience.

³⁴⁴ Load factor is an estimate by NRM based on several pre- and post-meter readings of installations; the value is supported by RLW Analytics (2007). *Small Business Services Custom Measure Impact Evaluation*. Prepared for National Grid.

³⁴⁵ Assumed average refrigeration efficiency for typical installations. Conservative value based on 15 years of NRM field observations and experience.

Hours

The annual operating hours are assumed to be 8,760 * (1-% OFF), where % OFF = 0 if the facility does not have evaporator fan controls or %OFF = $35\%^{346}$ if the facility has evaporator fan controls. See section: Refrigeration – Evaporator Fan Controls for %OFF value.

Measure Life

The measure life is 15 years.³⁴⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Evap Fan ECMs	Small Retrofit	1.00	1.00	1.61	1.00	1.00	1.50	0.70

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

RR based on 2005 custom small retrofit study.³⁴⁸

Coincidence Factors

CFs based on 2005 custom small retrofit study.³⁴⁹

³⁴⁶ The value is an estimate by NRM based on hundreds of downloads of hours of use data. These values are also supported by Select Energy (2004). *Cooler Control Measure Impact Spreadsheet User's Manual*. Prepared for NSTAR. ³⁴⁷ ERS (2005). *Measure Life Study*. Prepared for The MA Joint Utilities; 15-year measure life for retrofit motor installations.

³⁴⁸ RLW Analytics (2007). Small Business Services Custom Measure Impact Evaluation. Prepared for National Grid.

³⁴⁹ Ibid.

Refrigeration – Case Motor Replacement

Measure Overview

Description: Installation of electronically commutated motors (ECMs) in multi-deck and freestanding coolers and freezers, typically on the retail floor of convenience stores, liquor stores, and grocery stores.³⁵⁰ Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Program: C&I Small Retrofit

Algorithms for Calculating Primary Energy Impacts

$$\begin{split} \Delta kWh &= \Delta kWh_{Motor} + \Delta kWh_{Heat} \\ \Delta kWh_{motor} &= kW_{Motor} * LRF * Hours \\ \Delta kWh_{heat} &= \Delta kWh_{Motor} * 0.28 * Eff_{RS} \\ \Delta kW &= \Delta kWh / Hours \end{split}$$

Where:

ΔkWh_{Motor}	=	Energy savings due to increased efficiency of case motor
ΔkWh_{Heat}	=	Energy savings due to reduced heat from evaporator fans
kW _{motor}	=	Metered load of case motor
LRF	=	Load reduction factor: 53% when shaded pole motors are replaced, 29%
		when PSC motors are replaced ³⁵¹
Hours	=	Average runtime of case motors (8,500 hours) ³⁵²
0.28		Conversion of kW to tons: 3,413 Btuh/kW divided by 12,000 Btuh/ton.
Eff _{RS}	=	Efficiency of typical refrigeration system (1.6 kW/ton) ³⁵³

Baseline Efficiency

The baseline efficiency case is the existing case motor.

High Efficiency

The high efficiency case is the replacement of the existing case motor with an ECM.

Hours

Hours are the annual operating hours of the case motors.

³⁵⁰ The assumptions and algorithms used in this section are specific to NRM products.

³⁵¹ Load factor is an estimate by NRM based on several pre- and post-meter readings of installations

³⁵² Conservative value based on 15 years of NRM field observations and experience.

³⁵³ Assumed average refrigeration efficiency for typical installations. Conservative value based on 15 years of NRM field observations and experience.

Measure Life

The measure life is 15 years.³⁵⁴

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Case ECMs	Small Retrofit	1.00	1.00	1.61	1.00	1.00	1.50	0.70

In-Service Rates

All installations have 100% in service rate since all PAs' programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

RR based on 2005 custom small retrofit study.³⁵⁵

Coincidence Factors

CFs based on 2005 custom small retrofit study.³⁵⁶

³⁵⁴ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; 15-year measure ³⁵⁵ RLW Analytics (2007). Small Business Services Custom Measure Impact Evaluation. Prepared for National Grid.
 ³⁵⁶ Ibid.

Refrigeration – Evaporator Fan Controls

Measure Overview

Description: Installation of controls to modulate the evaporator fans based on temperature control. Energy savings include: fan energy savings from reduced fan operating hours, refrigeration energy savings from reduced waste heat, and compressor energy savings resulting from the electronic temperature control. Electronic controls allow less fluctuation in temperature, thereby creating savings.³⁵⁷ **Primary Energy Impact:** Electric **Secondary Energy Impact:** None **Non-Energy Impact:** None **Sector:** Commercial & Industrial **Market:** Retrofit

Market: Retrofit End Use: Refrigeration Program: C&I Small Retrofit

Algorithms for Calculating Primary Energy Impact

$$\begin{split} \Delta kWh &= \Delta kWh_{Fan} + \Delta kWh_{Heat} + \Delta kWh_{Control} \\ \Delta kWh_{Fan} &= kW_{Fan} * 8760 * \% OFF \\ \Delta kWh_{Heat} &= \Delta kWh_{Fan} * 0.28 * Eff_{RS} \\ \Delta kWh_{Control} &= \left[kW_{CP} * Hours_{CP} + kW_{Fan} * 8760 * (1 - \% Off) \right] * 5\% \\ \Delta kW &= \Delta kWh / 8760 \end{split}$$

Where:

ΔkWh_{Fan}	=	Energy savings due to evaporator being shut off
ΔkWh_{Heat}	=	Energy savings due to reduced heat from the evaporator fans
$\Delta kWh_{Control}$	=	Energy savings due to the electronic controls on compressor and evaporator
kW_{Fan}	=	Power demand of evaporator fan calculated from equipment nameplate data
		and estimated 0.55 power factor/adjustment ³⁵⁸
%OFF	=	Percent of annual hours that the evaporator is turned off: $35\%^{359}$
0.28	=	Conversion of kW to tons: 3,413 Btuh/kW divided by 12,000 Btuh/ton.
Eff _{RS}	=	Efficiency of typical refrigeration system: 1.6 kW/ton ³⁶⁰
kW _{CP}	=	Total power demand of compressor motor and condenser fan calculated from
		equipment nameplate data and estimated 0.85 power factor ³⁶¹
Hours _{CP}	=	Equivalent annual full load hours of compressor operation ³⁶²
5%	=	Reduced run-time of compressor and evaporator due to electronic controls ³⁶³

³⁵⁷ The assumptions and algorithms used in this section are specific to NRM products.

³⁵⁸ Conservative value based on 15 years of NRM field observations and experience.

³⁵⁹ The value is an estimate by NRM based on hundreds of downloads of hours of use data. These values are also supported by

Select Energy (2004). Cooler Control Measure Impact Spreadsheet User's Manual. Prepared for NSTAR.

³⁶⁰ Estimated average refrigeration efficiency for small business customers.

³⁶¹ This value is an estimate by NRM based on hundreds of downloads of hours of use data form the electronic controller.

³⁶² Conservative value based on 15 years of NRM field observations and experience.

³⁶³ Conservative estimate supported by less conservative values given by several utility-sponsored 3rd Party studies including: Select Energy (2004). *Analysis of Cooler Control Energy Conservation Measures*. Prepared for NSTAR.

Baseline Efficiency

The baseline efficiency case assumes evaporator fans that run 8760 annual hours with no temperature control.

High Efficiency

The high efficiency case is the use of an energy management system to control evaporator fan operation based on temperature.

Hours

The operation of the fans is estimated to be reduced by 35% from the 8,760 hours in the base case scenario.

Measure Life

The measure life is 10 years.³⁶⁴

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name						RR _{WP}		
Evap Fan Control	Small Retrofit	1.00	1.00	0.58	1.00	1.00	0.23	0.84

In-Service Rates

All installations have 100% in service rate since all PAs' programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Small retrofit RRs from 1996 savings analysis³⁶⁵

Coincidence Factors

CFs from 1996 savings analysis³⁶⁶

 ³⁶⁴ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
 ³⁶⁵ HEC, Inc. (1996), *Analysis of Savings from Walk-In Cooler Air Economizers and Evaporator Fan Controls*. Prepared for NEPSCo.
 ³⁶⁶ Ibid.

Refrigeration – Vending Misers

Measure Overview

Description: Controls can significantly reduce the energy consumption of vending machine lighting and refrigeration systems. Qualifying controls must power down these systems during periods of inactivity but, in the case of refrigerated machines, must always maintain a cool product that meets customer expectations. This measure applies to refrigerated beverage vending machines, non-refrigerated snack vending machines, and glass front refrigerated coolers. This measure should not be applied to ENERGY STAR® qualified vending machines, as they already have built-in controls.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: Refrigeration Program: C&I Large Retrofit, C&I Small Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithms and assumptions:

 $\Delta kWh = (kW_{RATED})(Hours)(SAVE)$ $\Delta kW = \Delta kWh/Hours$

Where:

kW _{rated}	=	Rated kW of connected equipment. See Table 5 for default rated kW by
		connected equipment type.
Hours	=	Operating hours of the connected equipment: default of 8,760 hours
SAVE	=	Percent savings factor for the connected equipment. See Table 5 for values.

Table 5: Vending Machine and Cooler Controls Savings Factors	367
--	-----

Equipment Type	$\Delta \mathbf{k} \mathbf{W}$	∆kWh
Refrigerated Beverage Vending Machines	0.1	800
Non-Refrigerated Snack Vending Machines	0	234
Glass Front Refrigerated Coolers	0.1	800

Baseline Efficiency

The baseline efficiency case is a standard efficiency refrigerated beverage vending machine, nonrefrigerated snack vending machine, or glass front refrigerated cooler without a control system capable of powering down lighting and refrigeration systems during periods of inactivity.

³⁶⁷ Deemed savings based on Staff estimates.

High Efficiency

The high efficiency case is a standard efficiency refrigerated beverage vending machine, non-refrigerated snack vending machine, or glass front refrigerated cooler with a control system capable of powering down lighting and refrigeration systems during periods of inactivity.

Hours

It is assumed that the connected equipment operates 24 hours per day, 7 days per week for a total annual operating hours of 8,760.

Measure Life

The measure life is 5 years.³⁶⁸

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Vending Misers	Large Retrofit	1	1	1.00	1.00	1.00	0.00	0.00
Vending Misers	Small Retrofit	1	1	1.035	1.004	1.12	0.00	0.00

In-Service Rates

All installations have 100% in service rate since all PAs' programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

RRs calculated based the number and type of vending miser installations and results from 2006 RLW impact study.³⁶⁹

Coincidence Factors

CFs based on staff estimates.

³⁶⁸ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

³⁶⁹ RLW (2007). Small Business Service Custom Measure Impact Evaluation. Prepared for National Grid.

Compressed Air – High Efficiency Air Compressors

Measure Overview

Description: Covers the installation of oil flooded, rotary screw compressors with Load/No Load, Variable Speed Drive, or Variable Displacement capacity control with properly sized air receiver. Efficient air compressors use various control schemes to improve compression efficiencies at partial loads. When an air compressor fitted with Load/No Load, Variable Speed Drive, or Variable Displacement capacity controls is used in conjunction with a properly-sized air receiver, considerable amounts of energy can be saved. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity, Retrofit End Use: Compressed Air Program: C&I New Construction, C&I Large Retrofit

Algorithms for Calculating Primary Energy Impacts

 $\Delta kWh = (HP_{COMPRESSOR})(SAVE)(Hours)$ $\Delta kW = (HP_{COMPRESSOR})(SAVE)$

Where:

HP _{COMPRESSOR}	=	Nominal rated horsepower of high efficiency air compressor.
Save	=	Air compressor kW reduction per HP. See Table 6 for values.
Hours	=	Annual operating hours of the air compressor.

	Nominal	kW Reduction per Horsepower (Save) ³⁷⁰					
Control Type	Horsepower (HP)	Lost Opportunity	Retrofit				
Load/No Load	≥ 15 and < 25	0.076	0.102				
Load/No Load	≥ 25 and ≤ 75	0.114	0.102				
VSD	≥ 15 and < 25	0.159	0.207				
VSD	≥ 25 and ≤ 75	0.228	0.206				
Variable Displacement	\geq 50 and <=75	0.110	0.116				

Table 6: Air Compressor kW Reduction per Horsepower

Baseline Efficiency

The baseline efficiency case is a typical modulating compressor with blow down valve.

 $^{^{370}}$ From NSTAR analysis based on metering data. The location of original data and analysis is unknown; however, these values are supported by multiple 3^{rd} party impact evaluations.

High Efficiency

The high efficient case is an oil-flooded, rotary screw compressor with Load/No Load, Variable Speed Drive, or Variable Displacement capacity control with a properly sized air receiver. Air receivers are designed to provide a supply buffer to meet short-term demand spikes which can exceed the compressor capacity. Installing a larger receiver tank to meet occasional peak demands can allow for the use of a smaller compressor.

Hours

The annual hours of operation for air compressors are site-specific and should be determined on a caseby-case basis.

Measure Life

For lost-opportunity installations, the lifetime for this measure is 15 years. For retrofit projects, the lifetime is 13 years.³⁷¹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Air Compressor	NC, Large Retrofit	1.00	1.00	1.00	1.00	1.00	0.80	0.54

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

RRs based on impact evaluation of PY 2004 compressed air installations.³⁷²

Coincidence Factors

CFs based on impact evaluation of PY 2004 compressed air installations.³⁷³

 ³⁷¹ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
 ³⁷² Ibid.

³⁷³ Demand Management Institute (2006). *Impact Evaluation of 2004 Compressed Air Prescriptive Rebates*. Prepared for National Grid. Results analyzed in RLW Analytics (2006). *Sample Design and Impact Evaluation Analysis for Prescriptive Compressed Air Measures in the Energy Initiative and Design 2000 Programs*. Prepared for National Grid.

Compressed Air – Refrigerated Air Dryers

Measure Overview

Description: The installation of cycling or variable frequency drive (VFD)-equipped refrigerated compressed air dryers. Refrigerated air dryers remove the moisture from a compressed air system to enhance overall system performance. An efficient refrigerated dryer cycles on and off or uses a variable speed drive as required by the demand for compressed air instead of running continuously. Only properly sized refrigerated air dryers used in a single-compressor system are eligible.

Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Compressed Air Program: C&I New Construction and Major Renovation

Algorithms for Calculating Primary Energy Impact

 $\Delta kWh = (CFM_{DRYER})(SAVE)(Hours)$ $\Delta kW = (CFM_{DRYER})(SAVE)$

Where:

CFM _{DRYER}	=	Full flow rated capacity of the refrigerated air dryer in cubic feet per minute
		(CFM). Obtain from equipment's Compressed Air Gas Institute Datasheet.
Save	=	Refrigerated air dryer kW reduction per dryer full flow rated CFM. See Table 7.
Hours	=	Annual operating hours of the refrigerated air dryer.

Table 7: Default kW Reduction per	CFM by Dryer Capacity (SAVE)
-----------------------------------	------------------------------

	kW Reduction
Dryer Capacity (CFM _{DRYER})	per CFM (Save) ³⁷⁴
<100	0.00474
$\geq 100 \text{ and } < 200$	0.00359
≥200 and <300	0.00316
≥300 and <400	0.00290
≥400	0.00272

Baseline Efficiency

The baseline efficiency case is a non-cycling refrigerated air dryer.

High Efficiency

The high efficiency case is a cycling refrigerated dryer or a refrigerated dryer equipped with a VFD.

³⁷⁴ From NSTAR analysis based on metering data. The location of original data and analysis is unknown; however, these values are supported by multiple 3rd party impact evaluations.

Hours

The annual hours of operation for compressed air dryers are site-specific.

Measure Life

The measure life is 15 years.³⁷⁵

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Refrigerated Air Dryers	NC	1.00	1.00	1.00	1.00	1.00	0.80	0.54

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

RRs based on impact evaluation of PY 2004 compressed air installations.³⁷⁶

Coincidence Factors

CFs based on impact evaluation of PY 2004 compressed air installations.³⁷⁷

³⁷⁵ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

³⁷⁶ DMI (2006). Impact Evaluation of 2004 Compressed Air Prescriptive Rebates. Prepared for National Grid. Results analyzed in RLW Analytics (2006). *Sample Design and Impact Evaluation*. ³⁷⁷ Ibid.

Motors/Drives – Premium Efficiency Motors

Measure Overview

Description: This measure promotes the purchase and installation of NEMA Premium Efficiency motors for new construction or time-of-replacement applications. Motors covered by this program must be new, three phase, induction motors, NEMA Design A & B, 1-200 HP, Open Drip-Proof (ODP) or Totally Enclosed Fan Cooled (TEFC), 1200, 1800, 3600 RPM and operate a minimum of 2,000 hours per year. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Motors/Drives Program: C&I New Construction & Major Renovation

Algorithms for Calculating Energy and Demand Savings

$$\Delta kWh = (HP)(0.746)(LF)\left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{ee}}\right)(HOURS)$$
$$\Delta kW = (HP)(0.746)(LF)\left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{ee}}\right)$$

Where:

HP	=	Motor rated nameplate horsepower.
0.746	=	kW per HP.
LF	=	Motor load factor: 0.62 ³⁷⁸
η_{base}	=	Baseline motor efficiency. See Table 18.
η_{ee}	=	Installed motor efficiency. See Table 19.
HOURS	=	Motor annual run hours.

Baseline Efficiency

For both lost opportunity and retrofit applications, it is assumed that the baseline efficiency meets the minimum federal manufacturing requirements as legislated by the Energy Policy Act of 1992 (EPACT 1992). The Baseline Efficiency levels are presented in Appendix A: Table 18.

High Efficiency

The high efficiency scenario assumes compliance with NEMA Premium Efficiency Motors requirements by motor type and size. These requirements are reproduced in Appendix A: Table 19.

³⁷⁸ SAIC (1995). *Motor Run-Time and Persistence Study Final Report*. Prepared for New England Power Service Company; Exhibit 5.1.

Hours

The annual hours of operation for motors are site-specific and should be determined on a case-by-case basis.

Measure Life

The measure life is 20 years.³⁷⁹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Motors	NC	1.00	1.00	0.97	1.00	1.00	0.76	0.60

In-Service Rates

All installations have 100% in service rate since PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Energy RR is the hours of use realization rate³⁸⁰; demand RR is set to 100% since the motor load factor is based on evaluated results.

Coincidence Factors

CFs from motor run-time and persistence study³⁸¹

 ³⁷⁹ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.
 ³⁸⁰ SAIC (1995). *Motor Run-Time and Persistence Study Final Report*. Prepared for New England Power Service Company;

Exhibit 5.1.

³⁸¹ Ibid.

Motors/Drives – Variable Frequency Drives

Measure Overview

Description: This measure covers the installation of variable speed drives according to the terms and conditions stated on the statewide worksheet. The measure covers multiple end use types. The installation of this measure saves energy since the power required to rotate a pump or fan at lower speeds requires less power than when rotated at full speed. Primary Energy Impact: Electric Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity, Retrofit End Use: Motors/Drives Program: C&I New Construction & Major Renovation, C&I Large Retrofit

Algorithms for Calculating Primary Energy Impacts

 $\Delta kWh = (HP)(kWh / HP)$

 $\Delta kW = (HP)(kW / HP)$

Where:

kWh/HP	=	Annual electric energy reduction based on program and equipment type. See Table 8.
kW/HP	=	Electric demand reduction based on program and equipment type. See Table 8.

	NEW CONS	TRUCTION	RETR (Drive)		RETROFIT (Motor & Drive)		
Measure	EnergyDemandSavingsSavingsFactorsFactors(kWh/HP)(kW/HP)		Energy Savings Factors (kWh/HP)	Demand Savings Factors (kW/HP)	Energy Savings Factors (kWh/HP)	Demand Savings Factors (kW/HP)	
Building Exhaust Fan	987.26	0.26	987.26	0.26	1039.78	0.27	
Boiler Feed Water Pump	890.76	0.20	902.48	0.20	946.33	0.21	
Boiler Draft Fan	1412.60	0.32	1438.39	0.32	1505.52	0.34	
Chilled Water Pump	551.55	0.05	551.55	0.05	584.20	0.06	
Cooling Tower Fan	295.80	0.06	843.25	0.11	861.52	0.12	
Heating Hot Water Pump	969.13	0.25	969.13	0.25	1019.94	0.26	
Return Fan	987.26	0.26	987.26	0.26	1039.78	0.27	
Supply Fan	1443.02	0.31	1443.02	0.31	1511.08	0.32	
Make-Up Air Fan	125.60	0.03	1160.65	0.23	1247.28	0.25	
Process Cooling Water Pump	505.22	0.10	519.42	0.10	566.66	0.11	
WS Heat Pump Circulating Loop	876.99	0.20	968.60	0.22	1224.11	0.28	
Waste Water Treatment Pump	N/A	N/A	340.97	0.09	379.58	0.10	

Table 8: VFD Savings Factors (kWh/HP and kW/HP)³⁸²

Baseline Efficiency

All baselines assume either a constant speed motor or 2-speed motor. In the baselines, air or water volume/temperature is controlled using valves, dampers, and/or reheats.

High Efficiency

In the high efficiency case, pump flow or fan air volume is directly controlled using downstream information. The pump or fan will automatically adjust its speed based on inputted set points and the downstream feedback it receives.

Hours

Hours vary by end use.

Measure Life

For lost-opportunity installations, the lifetime for this measure is 15 years. For retrofit projects, the lifetime is 13 years.³⁸³

Secondary Energy Impacts

There are no secondary energy impacts.

³⁸² The estimates of gross savings were developed through spreadsheet models and historical participation information.

³⁸³ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-1.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	РА	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
VFD	NC	National Grid	1.00	1.00	1.00	1.00	1.00	Error! Reference source not found.	Error! Reference source not found.
VFD	Large Retrofit	National Grid	1.00	1.00	1.00	1.00	1.00	Error! Reference source not found.	Error! Reference source not found.

In-Service Rates

All installations have 100% in service rate since all installations include verification of equipment installation.

Savings Persistence Factor

National Grid uses 100% savings persistence factors.

Realization Rates

RRs for all installations are set to 1.0.

Coincidence Factors

CFs vary by equipment type and program as given in Table 9.

Table 9: Coincidence Factors for VSD Measures

		EW RUCTION	RETROFIT Drive Only			ROFIT & Drive	
Measure	CF _{SP}	CF _{WP}	CF _{SP}	CF _{WP}	CF _{SP}	CF _{WP}	
Building Exhaust Fan	0.11	1.00	0.11	1.00	1.00	1.00	
Boiler Feed Water Pump	0.00	1.00	0.00	1.00	0.00	1.00	
Boiler Draft Fan	0.00	1.00	0.00	1.00	0.00	1.00	
Chilled Water Pump	1.00	0.00	1.00	0.00	1.00	0.00	
Cooling Tower Fan	1.00	1.00	1.00	0.00	1.00	0.00	
Heating Hot Water Pump	0.00	1.00	0.00	1.00	0.00	1.00	
Return Fan	0.11	1.00	0.11	1.00	1.00	1.00	
Supply Fan	0.36	1.00	0.36	1.00	0.17	1.00	
Make-Up Air Fan	1.00	1.00	1.00	1.00	1.00	1.00	
Process Cooling Water Pump	1.00	1.00	1.00	1.00	0.41	1.00	
WS Heat Pump Circulating Loop	0.10	1.00	0.11	1.00	0.33	1.00	
Waste Water Treatment Pump	N/A	N/A	1.00	1.00	1.00	1.00	

Custom Measures

Measure Overview

Description: The Custom project track is offered for energy efficiency projects involving complex site-specific applications that require detailed engineering analysis and/or projects which do not qualify for incentives under any of the prescriptive rebate offering. Projects offered through the custom approach must pass a cost-effectiveness test based on project-specific costs and savings.

Primary Energy Impact: Electric Secondary Energy Impact: Project Specific Non-Energy Impact: Project Specific Sector: Commercial & Industrial Market: Lost Opportunity, Retrofit End Use: All Program: C&I New Construction & Major Renovation, C&I Large Retrofit, C&I Small Retrofit

Algorithms for Calculating Primary Energy Impact

Gross energy and demand savings estimates for custom projects are calculated using engineering analysis with project-specific details. Custom analyses typically include a weather dependent load bin analysis, whole building energy model simulation, end-use metering or other engineering analysis and include estimates of savings, costs, and an evaluation of the projects' cost-effectiveness.

Baseline Efficiency

For Lost Opportunity projects, the baseline efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code or industry accepted standard practice. For retrofit projects, the baseline efficiency case is the same as the existing, or pre-retrofit, case for the facility.

High Efficiency

The high efficiency scenario is specific to the custom project and may include one or more energy efficiency measures. Energy and demand savings calculations are based on projected or measured changes in equipment efficiencies and operating characteristics and are determined on a case-by-case basis. The project must be proven cost-effective in order to qualify for energy efficiency incentives.

Hours

All hours for custom savings analyses should be determined on a case-by-case basis.

Measure Life

For both lost-opportunity and retrofit custom applications, the measure life is determined based on specific project using the common custom measure life recommendations.³⁸⁴

³⁸⁴ Energy & Resource Solutions (2005). *Measure Life Study*. Prepared for The Massachusetts Joint Utilities; Table 1-2.

Secondary Energy Impacts

All secondary energy impacts should be determined on a case-by-case basis.

Non-Energy Impacts

All non-energy impacts should be determined on a case-by-case basis.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Comprehensive	NC, Large Retrofit,	1.00	1.00	0.97	0.64	0.55	custom	custom
Lighting	NC, Large Retrofit	1.00	1.00	1.07	0.80	0.73	custom	custom
HVAC	NC, Large Retrofit	1.00	1.00	1.01	0.84	0.82	custom	custom
Process	NC, Large Retrofit	1.00	1.00	0.82	0.80	0.83	custom	custom
CHP	NC, Large Retrofit	1.00	1.00	1.00	1.00	1.00	custom	custom
Lighting	Small Retrofit	1.00	1.00	1.04	1.07	1.15	custom	custom
Refrigeration	Small Retrofit	1.00	1.00	1.60	1.49	0.69	custom	custom
Other	Small Retrofit	1.00	1.00	0.81	0.77	0.53	custom	custom

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

C&I NC and C&I Large Retrofit

- Realization Rates for the Lighting and Process categories are from "Sample Design and Impact Evaluation Analysis of the 2009 Custom Program".³⁸⁵
- Realization Rates for the Comprehensive and HVAC categories were updated based on the results of "Impact Evaluation of 2008-2009 Custom Comprehensive Installations"³⁸⁶ and "Impact Evaluation of 2009 Custom HVAC Installations".³⁸⁷ Both of these evaluations were performed by the Large C&I Evaluation Contractor team.
- Realization Rates for CHP projects are assumed to be 100% because projects undergo thorough technical review.

C&I Small Retrofit:

Realization Rates are derived from the results of an impact evaluation of National Grid's 2005 SBS program³⁸⁸ and updated each year based on the distribution of 2010 installations.

Coincidence Factors

³⁸⁷ Ibid.

³⁸⁵ KEMA, Inc. (2010). Sample Design and Impact Evaluation Analysis of 2009 Custom Program. Prepared for National Grid; Table 17.

³⁸⁶ KEMA, Inc. and SBW (2011). *Impact Evaluation of 2008 and 2009 Custom Comprehensive Installations*. Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council. Study 28 in the 2010 Massachusetts Electric Energy Efficiency Annual Report

³⁸⁸ RLW Analytics (2007). Small Business Services Custom Measure Impact Evaluation. Prepared for National Grid; Table 4.

Gross summer and winter peak coincidence factors are custom-calculated for each custom project based on projectspecific information. The actual or measured coincidence factors are included in the summer and winter demand realization rates.

Residential Natural Gas Efficiency Measures

HVAC – Boiler (Forced Hot Water)

Measure Overview

Description: Installation of a new space heating gas-fired boiler. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Heating and Water Heating

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMbtu = \Delta MMbtu$

Where:Units=Installation of high efficiency boiler Δ MMBtu=Annual MMBtu savings high efficiency boiler. See Table for values.

Measure	ΔMMBtu/Unit
Boiler (AFUE $\geq 85\%$)	7.2 389
Boiler (AFUE $\geq 90\%$)	13.7 ³⁹⁰

Baseline Efficiency

The baseline efficiency case is an 80% AFUE boiler.

High Efficiency

The high efficiency case is a boiler with an AFUE of 85% or greater.

Hours

Not applicable.

Measure Life

The measure life is 20 years.³⁹¹

 ³⁸⁹ Nexus Market Research (2010). *HEHE Process and Impact Evaluation*. Prepared for GasNetworks.
 ³⁹⁰ Ibid.

³⁹¹ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Qualified Boilers*. Interactive Excel Spreadsheet found at http://www.energystar.gov/index.cfm?c=boilers.pr_proc_boilers.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Boiler (AFUE >=85%)	Residential Heating and Water Heating	1.00	1.00	1.00	n/a	n/a	n/a	n/a
Boiler (AFUE >=90%)	Residential Heating and Water Heating	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC – Boiler Reset Controls (Retrofit only)

Measure Overview

Description: Boiler Reset Controls are devices that automatically control boiler water temperature based on outdoor temperature using a software program. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Retrofit End Use: HVAC Program: Residential Heating and Water Heating

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMbtu = \Delta MMbtu$

Where:		
ΔMMBtu	=	Annual MMBtu savings per boiler reset control installed: 7.9 MMBtu ³⁹²
Units	=	Number of installed Boiler Reset Controls

Baseline Efficiency

The baseline efficiency case is a boiler without reset controls.

High Efficiency

The high efficiency case is a boiler with reset controls.

Hours

Not applicable.

Measure Life

The measure life is 15 years.³⁹³

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

 ³⁹² ACEEE (2006). *Emerging Technologies Report: Advanced Boiler Controls*. Prepared for ACEEE; Page 2.
 ³⁹³ Ibid.

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Boiler Reset Controls	Residential Heating and Water Heating	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC – Early Replacement Boiler

Measure Overview

Description: Early retirement of inefficient gas-fired boiler and installation of new high efficiency gas-fired boiler.
Primary Energy Impact: Natural Gas
Secondary Energy Impact: None
Non-Energy Impact: None
Sector: Residential
Market: Retrofit
End Use: HVAC
Program: Residential Heating and Water Heating

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results and include two parts: (1) energy savings over the remaining lifetime of the existing boiler and (2) energy savings over the full life of the new high efficiency boiler:

$\Delta MMbtu = \Delta MMbtu_{RETIRE} + \Delta MMbtu_{EE}$

Where:

Unit	=	Removal of existing inefficient boiler and installation of new high efficiency boiler
$\Delta MMBtu_{RETIRE}$	=	Annual MMBtu savings of new code-compliant boiler compared to existing boiler:
		9.0 MMBtu ³⁹⁴
$\Delta MMBtu_{EE}$	=	Annual MMBtu savings of high efficiency boiler compared to new code-compliant boiler: 15.0 MMBtu ³⁹⁵
		DOILEL: 12.0 MINIBU

Baseline Efficiency

For the retirement savings over the remaining life of existing boiler, the baseline is the existing inefficient boiler. For the high efficiency unit savings over lifetime of the new boiler, the baseline is a code-compliant boiler (AFUE = 80%).

High Efficiency

For the retirement savings over the remaining life of existing boiler, the efficient case is a code-compliant boiler (AFUE = 80%). For the high efficiency savings over lifetime of the new boiler, the efficient case is a new high efficiency (AFUE >= 85%).

Hours

Not applicable.

 ³⁹⁴ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks.
 ³⁹⁵ Ibid.

Measure Life

The remaining life of an existing unit is 14 years.³⁹⁶ The measure life of new equipment is 20 years.³⁹⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Early Replacement Boiler	Residential Heating and Water Heating	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

³⁹⁶ Massachusetts Common Assumption: The remaining life of 14 years was determined by subtracting the average age of existing equipment (estimated by program vendor at 26 years) form the full lifetime of standard efficiency boilers (estimated by program vendor at 40 years). ³⁹⁷ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Qualified Boilers*. Interactive Excel

Spreadsheet found at http://www.energystar.gov/index.cfm?c=boilers.pr_proc_boilers.

HVAC – Programmable Thermostats

Measure Overview

Description: Installation of ENERGY STAR® labeled or 7-day programmable thermostats, which give the ability to adjust heating or air-conditioning operating times according to a pre-set schedule. **Primary Energy Impact:** Natural Gas **Secondary Energy Impact:** None

Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Retrofit End Use: HVAC Program: Residential Heating and Water Heating

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMbtu = \Delta MMbtu$

Where:		
Units		Number of Programmable T-stats installed
∆MMBtu	=	Annual MMBtu savings per programmable thermostat installed: 7.7 MMBtu ³⁹⁸

Baseline Efficiency

The baseline efficiency case is an HVAC system using natural gas to provide space heating without a programmable thermostat.

High Efficiency

The high efficiency case is an HVAC system that has an ENERGY STAR® or 7-day programmable thermostat installed.

Hours

Not applicable.

Measure Life

The measure life is 15 years.³⁹⁹

³⁹⁸ RLW Analytics (2007). *Validating the Impacts of Programmable Thermostats*. Prepared for GasNetworks; Page 2, conversion factor CCF to Therms is 1.024.

³⁹⁹ Environmental Protection Agency (2010). *Life Cycle Cost Estimate for ENERGY STAR Programmable Thermostat*. Interactive Excel Spreadsheet found at

 $www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorProgrammableThermostat.xls.$

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Programmable Thermostats	Residential Heating and Water Heating	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC – Furnace (Forced Hot Air) with ECM

Measure Overview

Description: Installation of a new high efficiency space heating gas-fired furnace with an electronically commutated motor (ECM) for the fan. Primary Energy Impact: Natural Gas Secondary Energy Impact: Electric Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Heating and Water Heating

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

 $\Delta MMbtu = \Delta MMbtu$

Where:

Units	=	Installation of furnace with ECM	
ΔMMBtu	=	Annual MMBtu savings for a furnace with ECM.	See Table for values.

Measure	ΔMMBtu
Furnace (AFUE = 92%)	11.8^{400}
Furnace w/ECM (AFUE = 92%)	19.6 ⁴⁰¹
Furnace w/ECM (AFUE = 94%)	23.6^{402}

Baseline Efficiency

The baseline efficiency case is a 78% AFUE furnace.

High Efficiency

The high efficiency case is a new furnace with AFUE >= 92%.

Hours

Not applicable.

Measure Life

The measure life is 18 years.⁴⁰³

⁴⁰⁰ Nexus Market Research (2010). *HEHE Process and Impact Evaluation*. Prepared for GasNetworks.

⁴⁰¹ Ibid.

⁴⁰² Ibid.

Secondary Energy Impacts

High efficiency furnaces equipped with ECM fan motors also save electricity from reduced fan energy requirements. The reduction of electric use is 478 kWh.⁴⁰⁴

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Furnace (AFUE = 92%)	Residential Heating and Water Heating	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Furnace w/ECM (AFUE = 92%)	Residential Heating and Water Heating	1.00	1.00	1.00	1.00	1.00	n/a	n/a
Furnace w/ECM (AFUE = 94%)	Residential Heating and Water Heating	1.00	1.00	1.00	1.00	1.00	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

⁴⁰³ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Furnace*. Interactive Excel Spreadsheet found at www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_Furnaces.xls.
 ⁴⁰⁴ The heating penalty of 21.1 – 19.6 MMBTU is equivalent to 478 kWh for the 92% efficient furnace (1,500,000BTU/ (0.92*3413 BTU/kWh).

HVAC – Heat Recovery Ventilator

Measure Overview

Description: Heat Recovery Ventilators (HRV) can help make mechanical ventilation more cost effective by reclaiming energy from exhaust airflows. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Heating and Water Heating

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMbtu = \Delta MMbtu$

Where:		
ΔMMBtu	=	Annual MMBtu savings per heat recovery ventilation installed: 7.7 MMBtu ⁴⁰⁵
Units	=	Number of heat recovery ventilation systems installed

Baseline Efficiency

The baseline efficiency case is an ASHRAE 62.2-compliant exhaust fan system with no heat recovery.

High Efficiency

The high efficiency case is an exhaust fan system with heat recovery.

Hours

Not applicable.

Measure Life

The measure life is 20 years.⁴⁰⁶

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

 ⁴⁰⁵ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks.
 ⁴⁰⁶ Ibid.

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Heat Recovery Ventilator	Residential Heating and Water Heating	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC - Stand Alone Storage Water Heater

Measure Overview

Description: High efficiency water heaters that are not combined with space heating devices. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Hot Water Program: Residential Heating and Water Heating

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMbtu = \Delta MMbtu$

Where: Units = Number of stand alone storage water heaters installed Δ MMBtu = Annual MMBtu savings per stand alone storage water heater EF >= 0.62: 1.9⁴⁰⁷

Baseline Efficiency

The baseline efficiency case is a stand alone tank water heater with an energy factor of 0.575.

High Efficiency

The high efficiency case is a stand alone tank water heater with an energy factor of 0.62 or higher.

Hours

Not applicable.

Measure Life

The measure life is 13 years.⁴⁰⁸

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

 ⁴⁰⁷ DOE (2008). ENERGY STAR® Residential Water Heaters: Final Criteria Analysis. Prepared for the DOE; Page 10.
 ⁴⁰⁸ Ibid.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Stand Alone Storage Water Heater $(EF \ge 0.62)$	Residential Heating and Water Heating	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

<u>Realization Rates</u> All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC – Gas Heating System Replacement (Low Income)

Measure Overview

Description: Replacement of an existing gas heating system with a new high efficiency system. Electric savings are achieved from reduced fan run time. Primary Energy Impact: Gas Secondary Energy Impact: Electric Non-Energy Impact: Annual Discounted Rate Cost Reduction, One-Time Arrearage Reduction, Annual Fire, Illness and Moving Avoidance Benefits, One-Time Property Value Benefit Sector: Low Income Market: Retrofit End Use: HVAC Program: Low-Income Single Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit		Installation of new high efficiency gas heating system.
ΔMMBtu	=	Average annual MMBtu savings per unit: 12.2 MMBtu ⁴⁰⁹

Baseline Efficiency

The baseline efficiency case is the existing inefficient heating equipment.

High Efficiency

The high efficiency case is the new efficient heating equipment.

Hours

Not applicable.

Measure Life

The measure life is 20 years.⁴¹⁰

Secondary Energy Impacts

Unit electric savings are deemed based on study results.

⁴⁰⁹ Cadmus Group, Inc. (2009). *Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program.* Prepared for National Grid; Page 5, Table 1.

⁴¹⁰ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Qualified Boilers*. Interactive Excel Spreadsheet found at http://www.energystar.gov/index.cfm?c=boilers.pr_proc_boilers.

PA	∆kWh/Unit	ΔkW/Unit
National Grid	194 ⁴¹¹	0.024^{412}

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction (Gas) ⁴¹³	\$(R3-R4)/Therm	Low Income
Annual Non-Resource	Annual Fire, Illness and Moving Avoidance Benefit ⁴¹⁴	\$203/Participant	Low Income
One-Time Non-Resource	One-Time Arrearage Benefit ⁴¹⁵	\$32/Participant	Low Income
One-Time Non-Resource	One-Time Property Value Benefit (Electric) ⁴¹⁶	\$20.70 x (\$Cost/kWh) x kWh saved	Low Income
One-Time Non-Resource	One-Time Property Value Benefit (Natural Gas) ⁴¹⁷	\$20.70 x (\$Cost/therm) x therms saved	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Gas Heating System Replacement	Low-Income Single Family Retrofit	1.00	1.00	1.00	1.00	1.00	0.03	1.00

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Realization rates are set to 100% because savings estimates are based on evaluation and analysis results.

Coincidence Factors

CFs are developed based on Quantec demand allocation methodology⁴¹⁸

⁴¹¹ Cadmus Group, Inc. (2009). Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization *Program.* Prepared for National Grid; Page 5, Table 1. ⁴¹² Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family*

EnergyWise Program. Prepared for National Grid. ⁴¹³ Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits.*

⁴¹⁴ Ibid.

⁴¹⁵ Brown, Marilyn A., Linda Berry, Richard Balzer, and Ellen Faby (1993). *National Impacts of the Weatherization Assistance* Program in Single-Family and Small Multifamily Dwellings. OFWL-CON-326, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

⁴¹⁶ Oppenheim, Jerry (2000). Memo - Low Income DSM Program non-energy benefits. ⁴¹⁷ Ibid.

⁴¹⁸ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family* EnergyWise Program. Prepared for National Grid.

HVAC - Gas Weatherization (Low Income)

Measure Overview

Description: Installation of weatherization measures such as air sealing and insulation in gas heated homes. Electric savings are achieved from reduced fan run time.
Primary Energy Impact: Gas
Secondary Energy Impact: Electric
Non-Energy Impact: Annual Discounted Rate Cost Reduction, One-Time Arrearage Reduction, Annual Fire, Illness and Moving Avoidance Benefits, One-Time Property Value Benefit
Sector: Low Income
Market: Retrofit
End Use: HVAC
Program: Low-Income Single Family Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit	=	Household with weatherization measures installed
ΔMMBtu	=	Average annual MMBtu savings per unit: 13.7 MMBtu ⁴¹⁹

Baseline Efficiency

The baseline efficiency case is the existing home shell.

High Efficiency

The high efficiency case can be a combination of increased insulation, air sealing, duct sealing, and other improvements to the home shell.

Hours

Not applicable.

Measure Life

The measure lives for weatherization projects may differ depending on the measures implemented. The final measure life of each application is weighted based on the mix of weatherization measures installed. The measure life for each type of weatherization measure is based on statewide measure lives for residential energy efficiency measures.⁴²⁰

 ⁴¹⁹ Cadmus Group, Inc. (2009). Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program. Prepared for National Grid; Page 5, Table 1.
 ⁴²⁰ GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures.

 ⁴²⁰ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*.
 Prepared for The New England State Program Working Group.

Secondary Energy Impact

Unit savings are deemed based on study results.

PA	∆kWh/Unit	ΔkW/Unit
National Grid	70^{421}	0.009^{422}

Non-Energy Benefits

Benefit Type	Description	Savings	Notes
Annual Non-Resource	Annual Discounted Rate Cost Reduction (Gas) ⁴²³	\$(R3-R4)/Therm	Low Income
Annual Non-Resource	Annual Fire, Illness and Moving Avoidance Benefit ⁴²⁴	\$203/Participant	Low Income
One-Time Non-Resource	One-Time Arrearage Benefit ⁴²⁵	\$32/Participant	Low Income
One-Time Non-Resource	One-Time Property Value Benefit (Electric) ⁴²⁶	\$20.70 x (\$Cost/kWh) x kWh saved	Low Income
One-Time Non-Resource	One-Time Property Value Benefit (Natural Gas) ⁴²⁷	\$20.70 x (\$Cost/therm) x therms saved	Low Income

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Gas Weatherization	Low-Income Single Family Retrofit	1.00	1.00	1.00	1.00	1.00	0.003	1.00

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

Realization rates are set to 100% because savings estimates are based on evaluation and analysis results.

Coincidence Factors

CFs are developed based on Quantec demand allocation methodology. 428

⁴²³ Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*. ⁴²⁴ Ibid.

⁴²¹ Cadmus Group, Inc. (2009). *Impact Evaluation of the 2007 Appliance Management Program and Low Income Weatherization Program.* Prepared for National Grid; Page 5, Table 1.

⁴²² Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

⁴²⁵ Brown, Marilyn A., Linda Berry, Richard Balzer, and Ellen Faby (1993). *National Impacts of the Weatherization Assistance Program in Single-Family and Small Multifamily Dwellings*. OFWL-CON-326, Oak Ridge National Laboratory, Oak Ridge, Tennessee,

 ⁴²⁶ Oppenheim, Jerry (2000). *Memo - Low Income DSM Program non-energy benefits*.
 ⁴²⁷ Ibid

⁴²⁸ Estimated using demand allocation methodology described in: Quantec, LLC (2000). *Impact Evaluation: Single-Family EnergyWise Program.* Prepared for National Grid.

HVAC – Gas Insulation

Measure Overview

Description: Shell insulation upgrades are applied in existing homes including improved insulation in attics, basements and sidewalls. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Retrofit End Use: HVAC Program: Residential Gas Weatherization Program

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMbtu = \Delta MMbtu$

Where: Δ MMBtu = Annual MMBtu savings for insulation in a gas heated home: 12.3 MMBtu⁴²⁹

Baseline Efficiency

The baseline efficiency case is any existing home shell measures.

High Efficiency

The high efficiency case includes increased weatherization insulation levels.

Hours

Not applicable.

Measure Life

The measure life is 20 years.⁴³⁰

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

 ⁴²⁹ Residential Gas Weatherization Program Impact Evaluation: 2008 Program Year by Summit Blue Consulting July 2009
 ⁴³⁰ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*.
 Prepared for The New England State Program Working Group; Page A-2.

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Insulation	Gas Weatherization	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100% since deemed savings are based on evaluation results.

<u>Coincidence Factors</u> There are no electric savings for this measure.

HVAC – Gas Air Sealing

Measure Overview

Description: Thermal shell air leaks are sealed through strategic use and location of air-tight materials. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Retrofit End Use: HVAC Program: Residential Gas Weatherization Program

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed:

$\Delta MMbtu = \Delta MMbtu$

Where: Δ MMBtu = Annual MMBtu savings for air sealing in a gas heated home: 6.5 MMBtu⁴³¹

Baseline Efficiency

The baseline efficiency case is the existing building before the air sealing measure is implemented.

High Efficiency

The baseline efficiency case is the existing building after the air sealing measure is implemented.

Hours

Not applicable.

Measure Life

The measure life is 20 years.⁴³²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

⁴³¹ Estimated based on previous years' savings per home reported by CSG for the RCS program.

⁴³² GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page A-2.

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Air Sealing	Gas Weatherization	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since all PA programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factors.

Realization Rates

Realization rates are set to 100%.

<u>Coincidence Factors</u> There are no electric savings for this measure.

HVAC/Hot Water - Integrated Water Heater/Condensing Boiler

Measure Overview

Description: This measure promotes the installation of a combined high-efficiency boiler and water heating unit. Combined boiler and water heating systems are more efficient than separate systems because they eliminate the standby heat losses of an additional tank. **Primary Energy Impact**: Natural Gas

Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Heating and Water Heating

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMbtu = \Delta MMbtu$

Where: Units = Installation of integrated water heater/condensing boiler $\Delta MMBtu = Annual MMBtu savings per integrated water heater/condensing boiler installed: 21.1 MMBtu⁴³³$

Baseline Efficiency

The baseline efficiency case is an 80% AFUE boiler with a 0.594 EF water heater.

High Efficiency

The high efficiency case is an integrated water heater/condensing boiler with a 90% AFUE boiler and a 0.9 EF water heater.

Hours

Not applicable.

Measure Life

The measure life is 20 years.⁴³⁴

⁴³³ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks.

⁴³⁴ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Qualified Boilers*. Interactive Excel Spreadsheet found at http://www.energystar.gov/index.cfm?c=boilers.pr_proc_boilers; measure life assumed to be the same as a boiler.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Integrated water heater/condensing boiler	Residential Heating and Water Heating	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC/Hot Water - Integrated Water Heater/Non-Condensing Boiler

Measure Overview

Description: This measure promotes the installation of a combined high-efficiency boiler and water heating unit. Combined boiler and water heating systems are more efficient than separate systems because they eliminate the standby heat losses of an additional tank.

Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: HVAC Program: Residential Heating and Water Heating

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMbtu = \Delta MMbtu$

Where:

Units	=	Number of per integrated water heater/condensing boilers installed
∆MMBtu	=	Annual MMBtu savings per integrated water heater/condensing boiler installed:
		13.5 MMBtu ⁴³⁵

Baseline Efficiency

The baseline efficiency case is an 80% AFUE boiler with a 0.594 EF water heater.

High Efficiency

The high efficiency case is an integrated water heater/condensing boiler with an 85% AFUE boiler and a 0.86 EF water heater.

Hours

Not applicable.

Measure Life

The measure life is 20 years.⁴³⁶

⁴³⁵ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks.

⁴³⁶ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Qualified Boilers*. Interactive Excel Spreadsheet found at http://www.energystar.gov/index.cfm?c=boilers.pr_proc_boilers; measure life assumed to be the same as a boiler.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	$\mathbf{CF}_{\mathbf{WP}}$
Integrated water heater/non- condensing boiler	Residential Heating and Water Heating	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Hot Water - Condensing Water Heater

Measure Overview

Description: Condensing water heaters recover energy by using either a larger heat exchanger or a second heat exchanger to reduce the flue-gas temperature to the point that water vapor condenses, thus releasing even more energy. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Hot Water Program: Residential Heating and Water Heating

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMbtu = \Delta MMbtu$

Where:
 ΔMMBtu = Annual MMBtu savings per condensing stand alone water heater installed: 7.4 MMBtu⁴³⁷
 Units = Number of Condensing Water Heaters installed

Baseline Efficiency

The baseline efficiency case is a stand alone tank water heater with an energy factor of 0.575.

High Efficiency

The high efficiency case is a condensing water heater with an energy factor of 0.8.

Hours

Not applicable.

Measure Life

The measure life is 15 years.⁴³⁸

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

 ⁴³⁷ DOE (2008). ENERGY STAR® Residential Water Heaters: Final Criteria Analysis. Prepared for the DOE; Page 10.
 ⁴³⁸ Ibid.

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Condensing water heaters	Residential Heating and Water Heating	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Hot Water – Indirect Water Heater

Measure Overview

Description: The installation of a high-efficiency indirect water heater. Indirect water heaters use a storage tank that is heated by the main boiler. The energy stored by the water tank allows the boiler to turn off and on less often, saving considerable energy. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Hot Water Program: Residential Heating and Water Heating

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMbtu = \Delta MMbtu$

Where:		
ΔMMBtu	=	Annual MMBtu savings indirect water heater unit installed: 8.0 MMBtu ⁴³⁹
Units	=	Number of savings indirect water heaters installed

Baseline Efficiency

The baseline efficiency case is a stand alone tank water heater with an energy factor of 0.575.

High Efficiency

The high efficiency case is an indirect water heater attached to an ENERGY STAR® rated forced hot water gas boiler.

Hours

Not applicable.

Measure Life

The measure life is 20 years.⁴⁴⁰

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

⁴³⁹ Nexus Market Research (2010). *HEHE Process and Impact Evaluation*. Prepared for GasNetworks.

⁴⁴⁰ GDS Associates, Inc. (2003). *Consumer Guide to Home Energy Savings*. Prepared for the 8th ed. ACEEE; Table 6.6.

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Indirect Water Heaters	Residential Heating and Water Heating	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Hot Water – Tankless Water Heaters

Measure Overview

Description: The installation of a high-efficiency tankless water heater with electronic ignition and an Energy Factor (EF) of at least 0.82. Tankless water heaters circulate water through a heat exchanger to be heated for immediate use, eliminating the standby heat loss associated with a storage tank.

Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Residential Market: Lost Opportunity End Use: Hot Water Program: Residential Heating and Water Heating

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMbtu = \Delta MMbtu$

Where: $\Delta MMBtu = Annual MMBtu savings per tankless water heater (EF >= 0.82) installed: 9.7 MMBtu⁴⁴¹$ Units = Number of tankless water heaters installed.

Baseline Efficiency

The baseline efficiency case is a stand alone tank water heater with an energy factor of 0.575.

High Efficiency

The high efficiency case is a tankless water heater with an energy factor of 0.82 or greater.

Hours

Not applicable.

Measure Life

The measure life is 20 years.⁴⁴²

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

⁴⁴¹ Nexus Market Research (2010). *HEHE Process and Impact Evaluation*. Prepared for GasNetworks.

⁴⁴² DOE (2008). ENERGY STAR® Residential Water Heaters: Final Criteria Analysis. Prepared for the DOE; Page 10.

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Tankless Water Heaters (EF>=0.82)	Residential Heating and Water Heating	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Behavior – OPOWER Gas

Measure Overview

Description: The OPOWER programs send energy use reports to participating gas customers in order to change customers' energy-use behavior. In 2010, the program was planned with only one measure for all cohorts. In 2011, the program was planned with unique measures for each cohort. In 2011, the program's name was changed to Behavior/Feedback. Primary Energy Impact: Natural Gas Secondary Energy Impact: None

Non-Energy Impact: None Sector: Residential Market: Products and Services End Use: Behavior **Program:** OPOWER Program

Algorithms for Calculating Primary Energy Impact

Unit saving are deemed based on study results:

 $\Delta MMBtu = (MMBtu_{BASE})(\%SAVE)$

Where:

Unit	=	One participant household
∆MMbtu	=	Average annual gas heating MMBtu savings per unit: 1.006 MMBtu ⁴⁴³
MMbtu _{BASE}	=	Average baseline consumption MMBtu per unit: 130.7 MMBtu ⁴⁴⁴
%SAVE	=	Annual percent of MMBtu savings per unit: 0.77% ⁴⁴⁵

OPOWER Program - Gas Savings Factors

Measure Name	MMBtu _{BASE}	%SAVE	ΔMMBtu		
CUSTSERV	130.7	0.77%	1.006		

Baseline Efficiency

The baseline efficiency case is a customer who does not receive OPOWER program reports.

High Efficiency

The high efficiency case is a customer who does receive OPOWER program reports.

Hours

Not applicable.

⁴⁴³ODC and Navigant (2011). MA Cross-Cutting Behavioral Program Evaluation. Prepared for MA Energy Efficiency Advisory Council. Study 17 in the 2010 Massachusetts Electric Energy Efficiency Annual Report. 444 Ibid.

⁴⁴⁵ Ibid.

Measure Life

The measure life is 1 year.

Secondary Energy Impacts

There are no secondary energy impacts for this measure

Non-Energy Impacts

There are no-non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
CUSTSERV	OPOWER	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

RRs are 100% because deemed savings are based on assumptions from year-to-date vendor findings. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Commercial and Industrial Natural Gas Efficiency Measures

HVAC – Programmable Thermostat

Measure Overview

Description: Installation of ENERGY STAR® labeled or 7-day programmable thermostats with the ability to adjust heating or air-conditioning operating times according to a pre-set schedule to meet occupancy needs and minimize redundant HVAC operation. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Program: C&I Retrofit, C&I Direct Install

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit		Installed programmable thermostat
ΔMMBtu	=	Average annual MMBtu reduction per unit: 7.5 MMBtu ⁴⁴⁶

Baseline Efficiency

The baseline efficiency case is an HVAC system using natural gas to provide space heating without a programmable thermostat.

High Efficiency

The high efficiency case is an HVAC system using natural gas to provide space heating with an ENERGY STAR® labeled or 7-day programmable thermostat installed.

Hours

Not applicable.

Measure Life

The measure life is 15 years.⁴⁴⁷

⁴⁴⁶ RLW Analytics (2007). *Validating the Impacts of Programmable Thermostats*; Page 2, conversion factor CCF to Therms is 1.024.

⁴⁴⁷ Environmental Protection Agency (2010). *Life Cycle Cost Estimate for ENERGY STAR Programmable Thermostat*. Interactive Excel Spreadsheet found at

 $www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorProgrammableThermostat.xls.$

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Programmable Thermostat	C&I Retrofit	1.00	1.00	1.00	n/a	n/a	n/a	n/a
Programmable Thermostat	C&I Direct Install	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC – Boiler Reset Controls (Retrofit only)

Measure Overview

Description: Boiler Reset Controls are devices that automatically control boiler water temperature based on outdoor or return water temperature using a software program. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: HVAC Program: C&I Retrofit, C&I Direct Install

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit		Installed boiler reset control
ΔMMBtu	=	Average annual MMBtu savings per unit: 35.5 MMBtu ⁴⁴⁸

Baseline Efficiency

The baseline efficiency case is a boiler without reset controls.

High Efficiency

The high efficiency case is a boiler with reset controls.

Hours

Not applicable.

Measure Life

The measure life is 20 years.⁴⁴⁹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

 ⁴⁴⁸ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks; the GDS Study assumes 710.46 MMBTU base use with 5% savings factor.
 ⁴⁴⁹ GDS Associates, Inc. (2009). Natural Gas Energy Efficiency Potential in Massachusetts. Prepared for GasNetworks; the study

⁴⁴⁹ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; the study references "KEMA (2003). *CA Statewide Commercial Sector NG EE Potential Study, Study ID #SW061*. Prepared for PG&E; Appendix D."

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Boiler Reset Controls	C&I Retrofit	1.00	1.00	1.00	n/a	n/a	n/a	n/a
Boiler Reset Controls	C&I Direct Install	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC – Condensing Unit Heater

Measure Overview

Description: Installation of a Condensing Gas Fired Unit Heater for space heating with capacity of 151 - 400 MBH and minimum combustion efficiency of 90% Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit	=	Installed condensing unit heater
∆MMBtu	=	Average annual MMBtu savings per unit: 40.9 MMBtu ⁴⁵⁰

Baseline Efficiency

The baseline efficiency case is a standard efficiency gas fired unit heater with minimum combustion efficiency of 80%, interrupted or intermittent ignition device (IID), and either power venting or an automatic flue damper.451

High Efficiency

The high efficiency case is a condensing gas unit heater with 90% AFUE or greater.

Hours

Not applicable.

Measure Life

The measure life is 18 years.⁴⁵²

⁴⁵⁰ NYSERDA Deemed Savings Database (Rev 11); Measure Name: A.UNIT-HEATER-COND.<300000.CI._...N. The database provides savings of 204.6 MMBtu per million BTU/hr of heater input capacity. Assume average unit size of 200,000 BTU capacity. ⁴⁵¹ ASHRAE Standard 90.1-2007; Table 6.8.1E.

⁴⁵² Ecotrope (2003). Natural Gas Efficiency and Conservation Measure Resource Assessment. Prepared for the Energy Trust of Oregon.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Condensing Unit Heater	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC – Gas-Fired Low Intensity Infrared Heating

Measure Overview

Description: The installation of a gas-fired low intensity infrared heating system in place of unit heater, furnace, or other standard efficiency equipment. Infrared heating uses radiant heat as opposed to warm air to heat buildings. In commercial environments with high air exchange rates, heat loss is minimal because the space's heat comes from surfaces rather than air. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit	=	Installed infrared heating unit
∆MMBtu	=	Average annual MMBtu savings per unit: 74.4 MMBtu ⁴⁵³

Baseline Efficiency

The baseline efficiency case is a standard efficiency gas-fired unit heater with combustion efficiency of 80%.

High Efficiency

The high efficiency case is a gas-fired low-intensity infrared heating unit.

Hours

Not applicable.

Measure Life

The measure life is 17 years.⁴⁵⁴

⁴⁵³ The savings are based on modeled data form 62 low-intensity infrared heaters installed through the Columbia Gas of MA custom commercial and industrial energy efficiency program. See "Infrared Samples - Bay State Gas.xls" for additional project data.

⁴⁵⁴ GDS Associates, Inc. (2004). The Maximum Achievable Cost-Effective Potential Gas DSM. Prepared for Questar Gas.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Low-Intensity Infrared Heating Unit	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC – High Efficiency Natural Gas Boiler

Measure Overview

Description: The installation of a high efficiency natural gas fired steam boiler or hot water boiler. High-efficiency boilers can take advantage of improved design, sealed combustion and condensing flue gases in a second heat exchanger to achieve improved efficiency. This measure incorporates steam boilers, condensing boilers and hydronic boilers of all capacities. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Program: C&I New Construction & Major Renovation

Notes

This measure uses deemed savings values, but is a strong candidate for developing a deemed calculation with inputs provided by the customer. In particular, the C&I evaluation project planned to start in 2010 should provide useful results to inform a deemed calculation and factor values.

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:

Unit =	:	Installed high efficiency boiler
--------	---	----------------------------------

 Δ MMBtu = Average annual MMBtu savings per unit. See Table 10 for values.

Table 10: MMBtu Savings by Boiler Type455

Boiler Type/Size	∆MMBTU/Unit
Steam Boiler 82% AFUE or greater	36.5
Condensing Boiler <= 300 MBH - 90% AFUE or greater	22.1
Condensing Boiler 301-499 MBH - 90% thermal efficiency or greater	42.3
Condensing Boiler 500-999 MBH - 90% thermal efficiency or greater	77.1
Condensing Boiler 1000-1700 MBH - 90% thermal efficiency or greater	142.6
Condensing Boiler 1701+ MBH - 90% thermal efficiency or greater	249
Hydronic Boiler <= 300 MBH – 85% AFUE or greater	16.8
Hydronic Boiler 301-499 MBH – 85% thermal efficiency or greater	35.3
Hydronic Boiler 500-999 MBH – 85% thermal efficiency or greater	66.2
Hydronic Boiler 1000-1700 MBH – 85% thermal efficiency or greater	119.1
Hydronic Boiler 1701+ MBH – 85% thermal efficiency or greater	150.0

⁴⁵⁵ For Steam Boiler and Hydronic Boilers: Opinion Dynamics Corporation (2007). *Evaluation Study of KeySpan's Commercial and Industrial High Efficiency Heating Equipment Program, Final.* Prepared for KeySpan Energy Delivery; Page 40. For Condensing Boilers: KEMA (2011). *Prescriptive Condensing Boiler Impact Evaluation, Project 5 Prescriptive Gas.* Study 35 2010 Massachusetts Electric Energy Efficiency Annual Report.

Baseline Efficiency

The baseline efficiency assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. The deemed savings methodology for this measure does not require specific baseline data, but the baseline information is provided here for use in the future when this is converted to a deemed calculated measure.

As described in Chapter 13 of the Massachusetts State Building Code, energy efficiency must be met via compliance with the International Energy Conservation Code (IECC) 2009 with the 2007 Supplement or ASHRAE 90.1-2007. The requirements for gas-fired boilers differ slightly between the two, so the less stringent requirements as presented in IECC 2006 are referenced below. Table 11 details the specific efficiency requirements by equipment type and capacity.

Equipment Type	Size Category (Input)	Subcategory or Rating Condition	Minimum Efficiency ^a
Boiler, Gas-Fired	<300,000 Btu/h	Hot Water	80% AFUE
		Steam	75% AFUE
	>=300,000 Btu/h and <=2,500,000 Btu/h	Minimum Capacity ^a	75% $\rm E_t$ and 80% $\rm E_c$
	>2,500,000 Btu/h	Hot Water	80% E _c
		Steam	80% E _c

Table 11: Boilers, Gas-Fired, Minimum Efficiency Requirements

a. Minimum ratings as provided for and allowed by the unit's controls

High Efficiency

The high efficiency scenario assumes a gas-fired boiler that exceeds the efficiency levels required by Massachusetts State Building Code. Actual site efficiencies should be determined on a case-by-case basis.

Hours

Not applicable.

Measure Life

The measure life is 25 years.⁴⁵⁷

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

⁴⁵⁶ Adapted form 2007 Supplement to the 2006 International Energy Conservation Code; Page 15, Table 503.2.3(5).

⁴⁵⁷ ASHRAE Applications Handbook (2003); Page 36.3.

Measure Name	Program	ISR	SPF	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Condensing Boiler	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a
Hydronic Boiler	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a
Steam Boiler	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC – High Efficiency Natural Gas Warm Air Furnace

Measure Overview

Description: The installation of a high efficiency natural gas warm air furnace with or without an electronically commutated motor (ECM) for the fan. High efficiency furnaces are better at converting fuel into direct heat and better insulated to reduce heat loss. ECM fan motors significantly reduce fan motor electric consumption as compared to both shaped-pole and permanent split capacitor motors. Primary Energy Impact: Natural Gas Secondary Energy Impact: Electric Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC Program: C&I New Construction & Major Renovation

Notes

This measure has significant savings and is thus a good candidate for a deemed calculation rather than a deemed savings value.

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:

Unit = Installed high efficiency warm air furnace

 Δ MMBtu = Average annual MMBtu savings per unit. See Table 12 for values.

Table 12. Miniblu Savings by P	mace Type
Boiler Type/Size	AMMBTU
Furnace AFUE => 92%	21.1
Furnace AFUE => 92% w/ ECM	19.6^{459}
Furnace AFUE => 94% w/ ECM	23.6

Table 12: MMBtu Savings by Furnace Type⁴⁵⁸

Baseline Efficiency

The baseline efficiency assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. The deemed savings methodology for this measure does not require specific baseline data, but the baseline information is provided here for use in the future when this is converted to a deemed calculated measure.

As described in Chapter 13 of the Massachusetts State Building Code, energy efficiency must be met via compliance with the International Energy Conservation Code (IECC) 2006 with the 2007 Supplement or

⁴⁵⁸ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks.

⁴⁵⁹ NYSERDA Deemed Savings Database.

ASHRAE 90.1-2007. The two documents present nearly identical requirements for gas-fired furnaces, so only the requirements as presented in IECC 2006 are referenced below. Table 13 details the specific efficiency requirements by equipment type and capacity.

Table 13: Warm Air Furnaces and Combination Warm Air Furnace/Air-Conditioning Units, Warm Air Duct Furnaces, Minimum Efficiency Requirements

		Subcategory or Rating	
Equipment Type	Size Category (Input)	Condition	Minimum Efficiency
Warm air furnaces, gas fired	< 225,000 Btu/h	-	78% AFUE or 80% Et ^b
	>= 225,000 Btu/h	Maximum capacity ^a	80% E _t ^c
Warm air duct furnaces, gas fired	All capacities	Maximum capacity ^a	80% E _c

a. Minimum and maximum ratings as provided for and allowed by the unit's controls.

b. Combination units not covered by the National Appliance Energy Conservation Act of 1987 (NAECA) (3-phase power or cooling capacity greater than or equal to 65,000 Btu/h [19 kW]) shall comply with either rating. c. Units must also include an Intermittent Ignition Device (IID), have jackets not exceeding 0.75 percent of the input rating, and have either power venting or a flue damper. A vent damper is an acceptable alternative to a flue damper for those furnaces where combustion air is drawn from the conditioned space.

High Efficiency

The high efficiency scenario assumes a gas-fired furnace that exceeds the efficiency levels required by Massachusetts State Building Code. Actual site efficiencies should be determined on a case-by-case basis.

Hours

Not applicable.

Measure Life

The measure life is 18 years.⁴⁶¹

Secondary Energy Impacts

High efficiency furnaces equipped with ECM fan motors also save electricity from reduced fan energy requirements. The reduction of electric use is 478 kWh⁴⁶².

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
HE Natural Gas Furnace	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a
HE Natural Gas Furnace w/ ECM	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a

⁴⁶⁰ Adapted form 2006 International Energy Conservation Code; Page 36, Table 503.2.3(4).

⁴⁶¹ ASHRAE Applications Handbook (2003); Page 36.3.

⁴⁶² The heating penalty of 21.1 - 19.6 MMBTU is equivalent to 478 kWh for the 92% efficient furnace (1,500,000BTU/ (0.92*3413 BTU/kWh).

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

HVAC/Hot Water - Combined High Efficiency Boiler and Water Heater

Measure Overview

Description: This measure promotes the installation of a combined high-efficiency boiler and water heating unit. Combined boiler and water heating systems are more efficient than separate systems because they eliminate the standby heat losses of an additional tank.

Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: HVAC, Hot Water Program: New Construction & Major Renovation Commercial

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:

Unit	=	Installed high efficiency boiler/water heater combo units
Δ MMBtu	=	Average annual MMBtu savings per unit. See Table 14 for values.

Table 14: MMBtu Savings by Boiler/Water Heater Combo Type⁴⁶³

Boiler/Water Heater Combo Type	ΔΜΜΒΤU
Integrated water heater/condensing boiler (0.86 EF, 0.85 AFUE)	20.0
Integrated water heater/condensing boiler (0.86 EF, 0.90 AFUE)	24.6

Baseline Efficiency

The baseline efficiency case is a standard efficiency gas-fired storage tank hot water heater with a separate standard efficiency boiler for space heating purposes.

High Efficiency

The high efficiency case is a condensing, integrated water heater/boiler with an AFUE of >=90% or >=85%.

Hours

Not applicable.

⁴⁶³ Based on an analysis conducted by Summit Blue, Inc. See "SB Gas Networks Calculations for Combined HVAC and DHW.xlsx" for source calculations.

Measure Life

The measure life is 25 years.⁴⁶⁴

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Integrated Water Heater/Condensing Boiler	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁴⁶⁴ ASHRAE Applications Handbook (2003); Page 36.3, assumes combined boiler and water heating systems have a measure life similar to a typical boiler.

Hot Water – Condensing Stand-Alone Water Heater

Measure Overview

Description: Installation of a condensing stand alone water heater with a capacity between 75-300 MBH and thermal efficiency of 95% or greater. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Hot water Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where: Unit = Installed condensing stand-alone water heater Δ MMBtu = Average annual MMBtu savings per unit (75,000 – 300,000 BTU) installed: 25.0 MMBtu⁴⁶⁵

Baseline Efficiency

The baseline efficiency case is a stand alone tank water heater with a thermal efficiency of 80%.⁴⁶⁶

High Efficiency

The high efficiency case is a condensing stand alone commercial water heater with a thermal efficiency of 95% or greater and a capacity between 75,000 Btu and 300,000 Btu.

Hours

Not applicable.

Measure Life

The measure life is 15 years.⁴⁶⁷

⁴⁶⁵ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; Page 2 of Appendix B-2, measure GDS C-WH-3. The GDS study references "ESource (2007). *Gas Fired Water Heater Screening Tool*. http://www.esource.com/BEA/demo/PDF/P_PA_41.pdf. Accessed on 10/22/10; used 0.96 Thermal Efficiency and 250 gallons per day."

⁴⁶⁶ ASHRAE Standard 90.1-2007; Table 7.8

⁴⁶⁷ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; Page 2 of Appendix B-2, measure GDS C-WH-4. The GDS study references "ACEEE (2004). *Emerging technologies and practices*; W1 - pg 46."

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Condensing Stand-Alone Water Heater	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Hot Water – Pre-Rinse Spray Valve

Measure Overview

Description: Retrofitting existing standard spray nozzles in locations where service water is supplied by natural gas fired hot water heater with new low flow pre-rinse spray nozzles with an average flow rate of 1.6 gpm. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: C&I Water, C&I Sewer Sector: Commercial, Industrial Market: Retrofit End Use: Hot Water Program: C&I Retrofit, C&I Direct Install

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit	=	Installed pre-rinse spray valve
∆MMBtu	=	Average annual MMBtu savings per unit: 33.6 MMBtu ⁴⁶⁸

Baseline Efficiency

The baseline efficiency case is a standard efficiency spray valve.

High Efficiency

The high efficiency case is a low flow pre-rinse spray valve with an average flow rate of 1.6 gpm.

Hours

Not applicable.

Measure Life

The measure life is 5 years.⁴⁶⁹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

 ⁴⁶⁸ SBW Consulting (2004). *EM&V Report for the CUWCC Pre-Rinse Spray Head Distribution Program.* Prepared for the California Urban Water Conservation Council; Page 20, savings of 0.92 therms per day * 365 days per year = 335.8 therms.
 ⁴⁶⁹ Veritec Consulting (2005). *Region of Waterloo Pre-Rinse Spray Valve Pilot Study, Final Report*; Page 8.

Non-Energy Impacts

Benefit Type	Description	Savings
C&I Water	C&I water savings ⁴⁷⁰	62,305 Gallons/Unit
C&I Sewer	C&I sewer water savings ⁴⁷¹	62,305 Gallons/Unit

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Pre-Rinse Spray Valve	C&I Retrofit	1.00	1.00	1.00	n/a	n/a	n/a	n/a
Pre-Rinse Spray Valve	C&I Direct Install	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁴⁷⁰ SBW Consulting (2004). EM&V Report for the CUWCC Pre-Rinse Spray Head Distribution Program. Prepared for the California Urban Water Conservation Council; Page 18, savings based on assumptions of 2.24 gallons per minute flow rate, 1.27 hours per day, 365 days per year. ⁴⁷¹ Ibid.

Hot Water – Repair/Replace Malfunctioning Steam Trap

Measure Overview

Description: Repair or replace malfunctioning steam traps. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Retrofit End Use: HVAC, Process Program: C&I Retrofit

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit	=	Repaired/replaced steam trap
∆MMBtu	=	Average annual MMBtu savings per unit: 25.3 MMBtu ⁴⁷²

Baseline Efficiency

The baseline efficiency case is a failed steam trap.

High Efficiency

The high efficiency case is a repaired or replaced steam trap.

Hours

Not applicable.

Measure Life

The measure life is 1 year.⁴⁷³

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

⁴⁷² Assumption based on historical steam trap surveys.

⁴⁷³ Massachusetts Common Assumption.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Steam Traps	C&I Retrofit	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Hot Water - Low Flow Shower Heads

Measure Overview

Description: Installation of a low flow showerhead with a flow rate of 1.5 gpm or less in a commercial setting with service water heated by natural gas. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: C&I Water, C&I Sewer Sector: Commercial Market: Retrofit End Use: Hot water Program: C&I Direct Install

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit	=	Installed low flow shower head
Δ MMBtu	=	Average annual MMBtu savings per unit: 5.2 MMBtu ⁴⁷⁴

Baseline Efficiency

The baseline efficiency case is a 2.5 gpm showerhead.

High Efficiency

The high efficiency case is a 1.5 gpm showerhead.

Hours

The savings estimates for this measure are determined empirically in terms of units installed and so the equivalent heating full load hours are not directly used, however, the calculator used to determine the deemed savings uses a default operation of 20 minutes a day, 365 days a year.

Measure Life

The measure life is 10 years.⁴⁷⁵

⁴⁷⁴US DOE: Federal Energy Management Program (2010). *Cost Calculator for Faucets & Shower Heads*. http://www1.eere.energy.gov/femp/technologies/eep_faucets_showerheads_calc.html#output. Accessed on 4/6/2010 using baseline 2.5 gpm and retrofit model at 1.5 gpm. Also supported by: GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; measure C-WH-15.

⁴⁷⁵ US DOE: Federal Energy Management Program (2010). *Cost Calculator for Faucets & Shower Heads.*

http://www1.eere.energy.gov/femp/technologies/eep_faucets_showerheads_calc.html#output. Accessed on 4/6/2010; Optimal Energy, ACEEE, VEIC, Resource Insight and Energy & Environmental Analysis (2006). Natural Gas Energy Efficiency Resource Development Potential in New York- Final Report. Prepared for NYSERDA; Page 27, Appendix B.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
C&I Water	C&I water savings	7,300 Gallons/Unit
C&I Sewer	C&I sewer water savings	7,300 Gallons/Unit

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Low Flow Shower Heads	C&I Direct Install	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Hot Water – Faucet Aerator

Measure Overview

Description: Installation of a faucet aerator with a flow rate of 1.5 gpm or less on an existing faucet with high flow in a commercial setting with service water heated by natural gas. **Primary Energy Impact:** Natural Gas Secondary Energy Impact: None Non-Energy Impact: C&I Water, C&I Sewer Sector: Commercial Market: Retrofit End Use: Hot water Program: C&I Direct Install

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit	=	Installed faucet aerator
∆MMBtu	=	Average annual MMBtu savings per unit: 1.7 MMBtu ⁴⁷⁶

Baseline Efficiency

The baseline efficiency case is a 2.2 gpm faucet.

High Efficiency

The high efficiency case is a faucet with 1.5 gpm or less aerator installed.

Hours

The savings estimates for this measure are determined empirically in terms of units installed and so the equivalent heating full load hours are not directly used, however, the calculator used to determine the deemed savings uses a default operation of 30 minutes a day, 260 days a year.

Measure Life

The measure life is 10 years.⁴⁷⁷

⁴⁷⁶ US DOE: Federal Energy Management Program (2010). Cost Calculator for Faucets & Shower Heads. http://www1.eere.energy.gov/femp/technologies/eep_faucets_showerheads_calc.html#output. Accessed on 4/6/2010 using baseline 2.2 gpm and retrofit model at 1.5 gpm. Same results also form: GDS Associates, Inc. (2009). Natural Gas Energy *Efficiency Potential in Massachusetts.* Prepared for GasNetworks; measure C-WH-15. ⁴⁷⁷ US DOE: Federal Energy Management Program (2010). *Cost Calculator for Faucets & Shower Heads.*

http://www1.eere.energy.gov/femp/technologies/eep_faucets_showerheads_calc.html#output. Accessed on 4/6/2010; Optimal Energy, ACEEE, VEIC, Resource Insight and Energy & Environmental Analysis (2006). Natural Gas Energy Efficiency Resource Development Potential in New York- Final Report. Prepared for NYSERDA; Page 27, Appendix B.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings
C&I Water	C&I water savings	5,460 Gallons/Unit
C&I Sewer	C&I sewer water savings	5,460 Gallons/Unit

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Faucet Aerator	C&I Direct Install	1.00	1.00	1.00	1.00	1.00	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Hot Water – High Efficiency Indirect Water Heater

Measure Overview

Description: The installation of a high-efficiency indirect water heater. Indirect water heaters use a storage tank that is heated by the main boiler. The energy stored by the water tank allows the boiler to turn off and on less often, saving considerable energy. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Hot Water Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:	
Unit ∆MMBtu	 Installed high efficiency indirect water heater Average annual MMBtu savings per unit: 30.4 MMBtu⁴⁷⁸

Baseline Efficiency

The baseline efficiency case is a code compliant gas-fired storage water heater with an assumed energy factor of 0.59. The baseline efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. As described in Chapter 13 of the State Building Code, energy efficiency must be met via compliance with the International Energy Conservation Code (IECC) 2009 with the 2007 Supplement or ASHRAE 90.1-2007. The two documents present nearly identical requirements for gas-fired storage water heaters. The assumed efficiency slightly exceeds the minimum required by code to reflect the typical baseline unit available in the marketplace.

High Efficiency

The high efficiency scenario is an indirect water heater with a Combined Appliance Efficiency (CAE) of 85% or greater.

Hours

Not applicable.

⁴⁷⁸ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; Appendix B-2.

Measure Life

The measure life is 15 years.⁴⁷⁹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
HE Indirect Water Heater	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁴⁷⁹ Ibid.

Hot Water – High Efficiency Tankless Water Heater

Measure Overview

Description: The installation of a high-efficiency tankless water heater with electronic ignition and an Energy Factor of at least 0.82. Tankless water heaters circulate water through a heat exchanger to be heated for immediate use, eliminating the standby heat loss associated with a storage tank.

Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Hot Water Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit	=	Installed high efficiency tankless water heater
∆MMBtu	=	Average annual MMBtu savings per unit: 7.1 MMBtu ⁴⁸⁰

Baseline Efficiency

The baseline efficiency case is a code compliant gas-fired storage water heater with an assumed Energy Factor of 0.59. The baseline efficiency assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. As described in Chapter 13 of the aforementioned document, energy efficiency must be met via compliance with the International Energy Conservation Code (IECC) 2006 with the 2007 Supplement or ASHRAE 90.1-2007. The two documents present nearly identical requirements for gas-fired storage water heaters. The assumed efficiency slightly exceeds the minimum required by code to reflect the typical baseline unit available in the marketplace.

High Efficiency

The high efficiency equipment is a gas-fired instantaneous hot water heater with an Energy Factor of at least 0.82.

Hours

Not applicable.

⁴⁸⁰ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; Appendix B-2.

Measure Life

The measure life is 20 years.⁴⁸¹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Tankless Water Heater	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁴⁸¹ Hewitt, D. Pratt, J. & Smith, G. (2005) *Tankless Gas Water Heaters: Oregon Market Status*. Prepared for the Energy Trust of Oregon.

Hot Water – High Efficiency Free Standing Water Heater

Measure Overview

Description: The installation of a high efficiency ENERGY STAR® freestanding water heater with an Energy Factor of at least 0.62, a nominal input of 75,000 BTU/hour, or less and a rated storage volume from 20 to 100 gallons.

Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Hot Water Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit		Installed high efficiency free-standing water heater
∆MMBtu	=	Average annual MMBtu savings per unit: 0.76 MMBtu ⁴⁸²

Baseline Efficiency

The baseline efficiency case is a code compliant gas-fired free standing water heater with an assumed Energy Factor of 0.594. The baseline efficiency assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code. As described in Chapter 13 of the aforementioned document, energy efficiency must be met via compliance with the International Energy Conservation Code (IECC) 2006 with the 2007 Supplement or ASHRAE 90.1-2007. The two documents present nearly identical requirements for gas-fired storage water heaters. The assumed efficiency slightly exceeds the minimum required by code to reflect the typical baseline unit available in the marketplace.

High Efficiency

The high efficiency case is an ENERGY STAR® gas-fired freestanding hot water heater with an Energy Factor of at least 0.62 and a nominal input of 75,000 BTU/hour.

Hours

Not applicable.

⁴⁸² GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; Appendix A-2.

Measure Life

The measure life is 10 years.⁴⁸³

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
HE Free Standing Water Heater	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁴⁸³ GDS Associates, Inc. (2009). *Natural Gas Energy Efficiency Potential in Massachusetts*. Prepared for GasNetworks; Appendix A-2.

Food Service – Commercial Gas-Fired Oven

Measure Overview

Description: Installation of High Efficiency Gas Ovens Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Process Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:

Unit = Installed high efficiency gas oven

 Δ MMBtu = Average annual MMBtu savings per unit. See Table 15 for values.

Table 15: Baseline and High	Efficiency Ratings and N	MMBtu Savings by Oven Type

Oven Type	Baseline Efficiency	High Efficiency	Δ MMBTU ⁴⁸⁴
High Efficiency Gas Convection Oven	30%	>= 40%	24.8^{485}
High Efficiency Gas Combination Oven	35% Heavy Load	>= 40%	40.3
High Efficiency Gas Conveyer Oven	20% Heavy Load	>= 40%	84.5
High Efficiency Gas Rack Oven	30%	>= 50%	211.3

Baseline Efficiency

The baseline efficiency case is a standard efficiency oven. See Table 15 for values by oven type.

High Efficiency

High efficiency case is an oven that meets or exceeds the high efficiency ratings per oven type shown in Table 15.

Hours

Not applicable.

Measure Life

The measure life is 12 years for both convection and combination ovens.⁴⁸⁶

⁴⁸⁴ Food Service Technology Center (2010). *Gas Combination Oven Life-Cycle Cost Calculator*.

http://www.fishnick.com/saveenergy/tools/calculators/gcombicalc.php. Accessed 6/10/10. ⁴⁸⁵ CEE (2008). *Technology Opportunity Assessment: Convection Ovens*; Page 5.

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
HE Gas Convection Oven (>=40%)	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a
HE Gas Combination Oven (>=40%)	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a
HE Gas Conveyer Oven (>=40%)	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a
HE Gas Rack Oven (>=50%)	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Not applicable for this measure since no electric savings are claimed.

⁴⁸⁶ Food Service Technology Center (2010). *Gas Combination Oven Life-Cycle Cost Calculator*.

http://www.fishnick.com/saveenergy/tools/calculators/gcombicalc.php. Accessed 6/10/10. AND Food Service Technology Center (2009). Gas Rack Oven Life-Cycle Cost Calculator.

http://www.fishnick.com/saveenergy/tools/calculators/grackovencalc.php Accessed on 6/10/10.

Food Service – Commercial Gas-Fired Griddle

Measure Overview

Description: Installation of a gas griddle with an efficiency of 38%. Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Process Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on study results:

$\Delta MMBtu = \Delta MMBtu$

Where:		
Unit		Installed high efficiency gas griddle.
∆MMBtu	=	Average annual MMBtu savings per unit: 18.5 MMBtu ⁴⁸⁷

Baseline Efficiency

The baseline efficiency case is a standard efficiency (30% efficient) gas griddle.

High Efficiency

The high efficiency case is a gas griddle with an efficiency of 38%.

Hours

Not applicable.

Measure Life

The measure life is 12 years.⁴⁸⁸

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

⁴⁸⁷ Food Service Technology Center (2010). *Gas Griddle Life-Cycle Cost Calculator*.

http://www.fishnick.com/saveenergy/tools/calculators/ggridcalc.php. Accessed on 10/22/10. 488 Ibid.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Gas-Fired Griddle	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Food Service – Commercial Fryer

Measure Overview

Description: The installation of a natural-gas fired fryer that is either ENERGY STAR® rated or has a heavy-load cooking efficiency of at least 50%. Qualified fryers use advanced burner and heat exchanger designs to use fuel more efficiently, as well as increased insulation to reduce standby heat loss.

Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: None Sector: Commercial & Industrial Market: Lost Opportunity End Use: Process Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithm and assumptions:

$$\Delta MMBtu = \left[\left(\frac{A_{BASE}}{\eta_{BASE}} + \left(B_{BASE} \times IDLE_{BASE} \right) + C_{BASE} \right) - \left(\frac{A_{EE}}{\eta_{EE}} + B_{EE} \left(IDLE_{EE} \right) + C_{EE} \right) \right] \left(\frac{365}{1,000,000} \right)$$

Where:

where:		
Unit	=	Installed high efficiency gas commercial fryer
∆MMBtu	=	gross annual average MMBtu savings per unit: 58.6489
A_{BASE}	=	Baseline equipment daily cooking energy (Btu/day). Default = 85,500 Btu.
η_{BASE}	=	Baseline equipment heavy-load cooking efficiency. Default = 35%.
B_{BASE}	=	Baseline equipment daily fryer idle time (hours). Default = 13.25 hrs.
IDLE _{BASE}	=	Baseline equipment idle energy rate (Btu/h). Default = 14,000 Btu/h.
C _{BASE}	=	Baseline equipment total daily preheat energy (Btu). Default = 16,000 Btu.
A_{EE}	=	Efficient equipment daily cooking energy (Btu/day). Default = 85,500 Btu.
η_{EE}	=	Efficient equipment heavy-load cooking efficiency.
\mathbf{B}_{EE}	=	Efficiency equipment daily fryer idle time (hours). Default 13.44 hrs.
IDLE _{EE}	=	Efficient equipment idle energy rate (Btu/h).
C_{EE}	=	Efficient equipment daily total preheat energy (Btu). Default = 15,500 Btu.
365	=	Days per year.
1,000,000	=	Btu per MMBtu.

Baseline Efficiency

The baseline efficiency case is a typical low-efficiency gas-fired fryer with 35% cooking efficiency, 16,000 Btu preheat energy, 14,000 Btu/h Idle Energy Rate, 60 lbs/h production capacity.⁴⁹⁰

 ⁴⁸⁹ Environmental Protection Agency (2009). *Life Cycle Cost Estimate for ENERGY STAR Gas Fryer*. Interactive Excel Spreadsheet found at http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Commercial_Gas_Fryers.xls.
 ⁴⁹⁰ Food Service Technology Center (2010). *Gas Fryer Life-Cycle Cost Calculator*.

http://www.fishnick.com/saveenergy/tools/calculators/gfryercalc.php. Accessed on 10/19/2010.

High Efficiency

The high efficiency case cooking efficiency and Idle Energy Rate are site specific and can be determined on a case-by-case basis. To simplify the savings algorithm, typical values for food load (150 lbs/day) and preheat energy (15,500 Btu) are assumed.

Hours

Not applicable.

Measure Life

The measure life is 12 years.⁴⁹¹

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

There are no non-energy impacts for this measure.

Impact Factors for Calculating Adjusted Gross Savings

Measure Name								
Commercial Fryer	C&I NC	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁴⁹¹ Ibid.

Food Service – Commercial Gas-Fired Steamer

Measure Overview

Description: The installation of an ENERGY STAR® rated natural-gas fired steamer, either connectionless or steam-generator design, with heavy-load cooking efficiency of at least 38%. Qualified steamers reduce heat loss due to better insulation, improved heat exchange, and more efficient steam delivery systems.

Primary Energy Impact: Natural Gas Secondary Energy Impact: None Non-Energy Impact: Water Sector: Commercial & Industrial Market: Lost Opportunity End Use: Process Program: C&I New Construction & Major Renovation

Algorithms for Calculating Primary Energy Impact

Unit savings are deemed based on the following algorithm and assumptions:

$\Delta MMBtu = (PANS)(SAVE)$

Where:

where.		
Unit	=	Installed high efficiency gas-fired steamer
ΔMMBtu	=	Average annual MMBTU savings for default condition of three pans: 153.6
		MMBtu
PANS	=	Efficient equipment number of pans. Default is 3 pans.
SAVE	=	Average savings per pan: default of 51.2 MMBtu ⁴⁹²

Baseline Efficiency

The baseline efficiency case is a typical boiler-based steamer with the following operating parameters: Preheat Energy = 18,000 Btu, Idle Energy Rate = 3,667 Btu/h/pan, Heavy Load Efficiency = 15.0%, Production Capacity = 21.7 lbs/h/pan, Average Water Consumption Rate = 40 gal/h, and Percentage of Time in Constant Steam Mode = 90%.⁴⁹³

High Efficiency

The high efficiency case is an ENERGY STAR® qualified gas-fired steamer with the following operating parameters: Preheat Energy = 7,000 Btu, Idle Energy Rate = 2,083 Btu/h/pan, Heavy Load Efficiency =

⁴⁹² Food Service Technology Center (2010). *Gas Steamer Life-Cycle Cost Calculator*.

http://www.fishnick.com/saveenergy/tools/calculators/gsteamercalc.php. Accessed on 10/20/2010; the estimated annual MMBtu savings per pan is derived using the referenced cost calculator and the operating parameters described in the Baseline Efficiency, High Efficiency, and Hours sections. The savings per pan is found by averaging the per pan savings estimates for 3-, 4-, 5-, and 6-pan steamers.

⁴⁹³ Food Service Technology Center (2010). *Gas Steamer Life-Cycle Cost Calculator*.

http://www.fishnick.com/saveenergy/tools/calculators/gsteamercalc.php. Accessed on 10/20/2010.

38.0%, Production Capacity = 18.3 lbs/h/pan, Average Water Consumption Rate = 3.0 gal/h, and Percentage of Time in Constant Steam Mode = 0%.⁴⁹⁴

Hours

The deemed savings assumes 4,380 annual operating hours (12 hours a day * 365 days/year).⁴⁹⁵

Measure Life

The measure life is 10 years.⁴⁹⁶

Secondary Energy Impacts

There are no secondary energy impacts for this measure.

Non-Energy Impacts

Benefit Type	Description	Savings ⁴⁹⁷
C&I Water	C&I Water Savings	162,060 Gallons/Unit
C&I Wastewater	C&I Wastewater Savings	162,060 Gallons/Unit

Impact Factors for Calculating Adjusted Gross Savings

Measure Name	Program	ISR	SPF	$\mathbf{R}\mathbf{R}_{\mathrm{E}}$	RR _{SP}	RR _{WP}	CF _{SP}	$\mathbf{CF}_{\mathbf{WP}}$
Gas-Fired Steamer	C&I NC	1.00	1.00	1.00	1.00	1.00	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

⁴⁹⁴ Ibid.

⁴⁹⁵ Consortium for Energy Efficiency (2010). *Program Design Guidance: Steamers*.

⁴⁹⁶ Ibid.

⁴⁹⁷ Food Service Technology Center (2010). *Gas Steamer Life-Cycle Cost Calculator*.

http://www.fishnick.com/saveenergy/tools/calculators/gsteamercalc.php. Accessed on 10/20/2010; the estimated water savings is derived using the referenced cost calculator and the operating parameters described in the Baseline Efficiency, High Efficiency, and Hours sections. The savings per pan is found by averaging the per pan savings estimates for 3-, 4-, 5-, and 6-pan steamers.

Custom Measures

Measure Overview

Description: The Custom project track is offered for energy efficiency projects involving complex site-specific applications that require detailed engineering analysis and/or projects which do not qualify for incentives under any of the prescriptive rebate offering. Projects offered through the custom approach must pass a cost-effectiveness test based on project-specific costs and savings.
Primary Energy Impact: Natural Gas (Heating, Water Heating, or All)
Secondary Energy Impact: Project Specific
Non-Energy Impact: Project Specific
Sector: Commercial & Industrial
Market: Lost Opportunity, Retrofit
End Use: All

Algorithms for Calculating Primary Energy Impact

Gross energy and demand savings estimates for custom projects are calculated using engineering analysis and project-specific details. Custom analyses typically include a weather dependent load bin analysis, whole building energy model simulation, or other engineering analysis and include estimates of savings, costs, and an evaluation of the project's cost-effectiveness.

Baseline Efficiency

Program: All

For Lost Opportunity projects, the baseline efficiency case assumes compliance with the efficiency requirements as mandated by Massachusetts State Building Code or industry accepted standard practice.

For retrofit projects, the baseline efficiency case is the same as the existing, or pre-retrofit, case for the facility.

High Efficiency

The high efficiency scenario is specific to the custom project and may include one or more energy efficiency measures. Energy and demand savings calculations are based on projected changes in equipment efficiencies and operating characteristics and are determined on a case-by-case basis. The project must be proven cost-effective in order to qualify for energy efficiency incentives.

Hours

All hours for custom savings analyses should be determined on a case-by-case basis.

Measure Life

For both lost-opportunity and retrofit custom applications, the measure life is determined on a case-bycase basis.

Secondary Energy Impacts

All secondary energy impacts should be determined on a case-by-case basis.

Non-Energy Impacts

All non-energy impacts should be determined on a case-by-case basis.

Impact Factors for Calculating Adjusted Gross Savings

Measure	Program	ISR	SPF	RR _E	RR _{SP}	RR _{WP}	CF _{SP}	CF _{WP}
Custom	All	1.00	1.00	1.00	n/a	n/a	n/a	n/a

In-Service Rates

All installations have 100% in service rate since programs include verification of equipment installations.

Savings Persistence Factor

All PAs use 100% savings persistence factor.

Realization Rates

All PAs use 100% energy realization rate. The summer and winter peak realization rates are not applicable for this measure since there are no electric savings claimed.

Coincidence Factors

Appendices

Appendix A: Common Lookup Tables

Building Area Type	Lighting Power Density (W/ft ²)
Automotive Facility	0.9
Convention Center	1.2
Court House	1.2
Dining: Bar Lounge/Leisure	1.3
Dining: Cafeteria/Fast Food	1.4
Dining: Family	1.6
Dormitory	1.0
Exercise Center	1.0
Gymnasium	1.1
Healthcare-Clinic	1.0
Hospital	1.2
Hotel	1.0
Library	1.3
Manufacturing Facility	1.3
Motel	1.0
Motion Picture Theatre	1.2
Multi-Family	0.7
Museum	1.1
Office	1.0
Parking Garage	0.3
Penitentiary	1.0
Performing Arts Theatre	1.6
Police/Fire Station	1.0
Post Office	1.1
Religious Building	1.3
Retail	1.5
School/University	1.2
Sports Arena	1.1
Town Hall	1.1
Transportation	1.0
Warehouse	0.8
Workshop	1.4

Table 17: Lighting Power Densities Using the Space-by-Space Method (WATTS_{b,i})⁴⁹⁹

Common Space Types	Lighting Power Density (W/ft ²)
Office – Enclosed	1.1
Office - Open Plan	1.1
Conference/Meeting/Multipurpose	1.3

 ⁴⁹⁸ IECC 2009 Lighting Provisions, Section 505 Electrical Power and Lighting Systems, Table 505.5.2 Interior Lighting Power Allowances, Lighting provisions pgs.5-6.
 ⁴⁹⁹ ASHRAE 90.1-2007 Energy Standard for Building Except Low-Rise Residential Buildings, Table 9.6.1, pp.63-64.

Common Space Types	Lighting Power Density (W/ft ²)
Classroom/Lecture/Training	1.4
For Penitentiary	1.3
Lobby	1.3
For Hotel	1.1
For Performing Arts Theater	3.3
For Motion Picture Theater	1.1
Audience/Seating Area	0.9
For Gymnasium	0.4
For Exercise Center	0.3
For Convention Center	0.7
For Penitentiary	0.7
For Religious Buildings	1.7
For Sports Arena	0.4
For Performing Arts Theater	2.6
For Motion Picture Theater	1.2
For Transportation	0.5
Atrium - First Three Floors	0.6
Atrium - Each Additional Floor	0.2
Lounge/Recreation	1.2
For Hospital	0.8
Dining Area	0.9
For Penitentiary	1.3
For Hotel	1.3
For Motel	1.2
For Bar Lounge/Leisure Dining	1.4
For Family Dining	2.1
Food Preparation	1.2
Laboratory	1.4
Restrooms	0.9
Dressing/Locker/Fitting Room	0.6
Corridor/Transition	0.5
For Hospitals	1.0
For Manufacturing Facilities	0.5
Stairs – Active	0.6
Active Storage	0.8
For Hospital	0.9
Inactive Storage	0.3
For Museum	0.8
Electrical/Mechanical	1.5
Building Specific Space Types	Lighting Power Density (W/ft2)
Gymnasium/Exercise Center	
Exercise Area	0.9
Playing Area	1.4
Court House/Police Station/Penitentiary	
Courtroom	1.9

Common Space Types	Lighting Power Density (W/ft ²)
Confinement Cells	0.9
Judges Chambers	1.3
Fire Stations	
Engine Room	0.8
Sleeping Quarters	0.3
Post Office – Sorting Area	1.2
Convention Center - Exhibit Space	1.3
Library	
Card File and Cataloging	1.1
Stacks	1.7
Reading Area	1.2
Hospital	
Emergency	2.7
Recovery	0.8
Nurses' Station	1.0
Exam/Treatment	1.5
Pharmacy	1.2
Patient Room	0.7
Operating Room	2.2
Nursery	0.6
Medical Supply	1.4
Physical Therapy	0.9
Radiology	0.4
Laundry-Washing	0.4
Automobile - Service/Repair	0.7
Manufacturing	0.7
Low Bay (< 25 ft. Floor to Ceiling Height)	1.2
High Bay (≥ 25 ft. Floor to Ceiling Height)	1.2
Detailed Manufacturing	2.1
Equipment Room	1.2
Control Room	0.5
Hotel/Motel Guest Rooms	1.1
Dormitory - Living Quarters	1.1
Museum	1.0
General Exhibition	1.0
Restoration	1.7
Bank/Office - Banking Activity Areas	1.5
Workshop	1.9
Sales Area [for accent lighting, see Section 9.6.2(b)]	1.7
Religious Buildings	
Worship Pulpit, Choir	2.4
Fellowship Hall	0.9
Retail	
Sales Area [for accent lighting, see Section 9.6.3(c)]	1.7
Mall Concourse	1.7
Sports Arena	

Common Space Types	Lighting Power Density (W/ft ²)
Ring Sports Arena	2.7
Court Sports Arena	2.3
Indoor Playing Field Area	1.4
Warehouse	
Fine Material Storage	1.4
Medium/Bulky Material Storage	0.9
Parking Garage - Garage Area	0.2
Transportation	
Airport – Concourse	0.6
Airport/Train/Bus - Baggage Area	1.0
Terminal - Ticket Counter	1.5

	(Open Drip Pro	of	Totally	Enclosed Fan	Cooled
Motor Horsepower	1200 rpm	1800 rpm	3600 rpm	1200 rpm	1800 rpm	3600 rpm
1	80.0	82.5	N/A	80.0	82.5	75.5
1.5	84.0	84.0	82.5	85.5	84.0	82.5
2	85.5	84.0	84.0	86.5	84.0	84.0
3	86.5	86.5	84.0	87.5	87.5	85.5
5	87.5	87.5	85.5	87.5	87.5	87.5
7.5	88.5	88.5	87.5	89.5	89.5	88.5
10	90.2	89.5	88.5	89.5	89.5	89.5
15	90.2	91.0	89.5	90.2	91.0	90.2
20	91.0	91.0	90.2	90.2	91.0	90.2
25	91.7	91.7	91.0	91.7	92.4	91.0
30	92.4	92.4	91.0	91.7	92.4	91.0
40	93.0	93.0	91.7	93.0	93.0	91.7
50	93.0	93.0	92.4	93.0	93.0	92.4
60	93.6	93.6	93.0	93.6	93.6	93.0
75	93.6	94.1	93.0	93.6	94.1	93.0
100	94.1	94.1	93.0	94.1	94.5	93.6
125	94.1	94.5	93.6	94.1	94.5	94.5
150	94.5	95.0	93.6	95.0	95.0	94.5
200	94.5	95.0	94.5	95.0	95.0	95.0

Table 18: EPACT 1992 Baseline Motor Efficiencies⁵⁰⁰

 Table 19: Minimum Premium Efficiency Motors Compliance Efficiencies⁵⁰¹

	(Open Drip Proc	of	Totally	Enclosed Fan	Cooled	
Motor Horsepower	1200 rpm	1800 rpm	3600 rpm	1200 rpm	1800 rpm	3600 rpm	
1	82.5	85.5	N/A	82.5	85.5	77.0	
1.5	86.5	86.5	84	87.5	86.5	84	
2	87.5	86.5	85.5	88.5	86.5	85.5	
3	88.5	89.5	85.5	89.5	89.5	86.5	
5	89.5	89.5	86.5	89.5	89.5	88.5	
7.5	90.2	91	88.5	91	91.7	89.5	
10	91.7	91.7	89.5	91	91.7	90.2	
15	97.7	93	90.2	91.7	92.4	91	
20	92.4	93	91	91.7	93	91	
25	93	93.6	91.7	93	93.6	91.7	
30	93.6	94.1	91.7	93	93.6	91.7	
40	94.1	94.1	92.4	94.1	94.1	92.4	
50	94.1	94.5	93	94.1	94.5	93	

⁵⁰⁰ Energy Policy Act of 1992
 ⁵⁰¹ NEMA Premium MG1-2006 Table 12-12

	Open Drip Proof Totally Enclosed Fan Cooled					
Motor Horsepower	1200 rpm	1800 rpm	3600 rpm	1200 rpm 1800 rpm		3600 rpm
60	94.5	95	93.6	94.5	95	93.6
75	94.5	95	93.6	94.5	95.4	93.6
100	95	95.4	93.6	95	95.4	94.1
125	95	95.4	94.1	95	95.4	95
150	95.4	95.8	94.1	95.8	95.8	95
200	95.4	95.8	95	95.8	96.2	95.4

Table 20: Non-Energy Impacts for Commercial Lighting Measures

			Impact	
End-Use	Measure Type	Retrofit	Lost Opportunity	Unit
Lighting	LED Exit Sign	\$33.65	\$33.45	Exit Sign
Lighting	CFL Fixtures	\$18.67	\$17.93	Fixture
Lighting	Fluorescent Lighting (T8 Lamp/Ballast)	\$0.41	\$0.00	Fixture
Lighting	T8 Lamp/Ballast + Reflectors	\$0.91	\$0.00	Fixture
Lighting	Occupancy Sensors	\$6.69	\$6.69	ΔkW
Lighting	Daylight Dimming	\$0.00	\$0.00	ΔkW

⁵⁰² Ibid.

Appendix B: Net to Gross Impact Factors

Residential Electric	Efficiency Measur	es			
Measure	PA	FR	SOP	SO _{NP}	NTG
Residential New Constru	ction & Major Renova	tion		•	
LED Fixture	National Grid	0%	0%	0%	100%
Residential Cooling	& Heating Equipment		•	•	
Brushless Furnace Fan Motor	National Grid	15%	0%	0%	85%
CoolSmart AC (SEER $\geq 15 / EER \geq 12.5$)	National Grid	15%	0%	0%	85%
CoolSmart AC (SEER $\geq 15 / EER \geq 13$)	National Grid	15%	0%	0%	85%
CoolSmart AC (SEER 14.5 / EER 12)	National Grid	15%	0%	0%	85%
CoolSmart AC Digital Check-up/Tune-up	National Grid	15%	0%	0%	85%
Mass	SAVE		•	-	
Air Sealing, Electric	National Grid	7%	0%	0%	93%
Air Sealing, Gas	National Grid	7%	0%	0%	93%
Air Sealing, Oil	National Grid	7%	0%	0%	93%
Air Sealing, Other FF	National Grid	7%	0%	0%	93%
Boiler Reset Controls	National Grid	0%	0%	0%	100%
DHW ISMs, Electric	National Grid	25%	0%	0%	75%
DHW ISMs, Gas	National Grid	25%	0%	0%	75%
DHW ISMs, Oil	National Grid	25%	0%	0%	75%
DHW ISMs, Other FF	National Grid	25%	0%	0%	75%
Duct Insulation, Electric	National Grid	20%	8%	50%	138%
Duct Insulation, Gas	National Grid	20%	8%	50%	138%
Duct Insulation, Oil	National Grid	20%	8%	50%	138%
Duct Insulation, Other FF	National Grid	20%	8%	50%	138%
Duct Seal, Electric	National Grid	7%	0%	0%	93%
Duct Seal, Oil	National Grid	7%	0%	0%	93%
Duct Seal, Other FF	National Grid	7%	0%	0%	93%
ES Window, Electric	National Grid	0%	0%	0%	100%
ES Window, Gas	National Grid	0%	0%	0%	100%
ES Window, Oil	National Grid	0%	0%	0%	100%
ES Window, Other FF	National Grid	0%	0%	0%	100%
Heating System Replacement, Gas	National Grid	28%	0%	0%	72%
Heating System Replacement, Oil	National Grid	28%	0%	0%	72%
Heating System Replacement, Other FF	National Grid	28%	0%	0%	72%
Indirect Water Heater, Oil	National Grid	25%	0%	0%	75%
Indirect Water Heater, Other FF	National Grid	25%	0%	0%	75%
Insulation, Electric	National Grid	20%	8%	50%	138%
Insulation, Gas	National Grid	20%	8%	50%	138%
Insulation, Oil	National Grid	20%	8%	50%	138%
Insulation, Other FF	National Grid	20%	8%	50%	138%
Refrigerator (ES Value)	National Grid	35%	36%	0%	101%

Refrigerator (Retirement Value)	National Grid	35%	36%	0%	101%
Screw-in Bulbs	National Grid	22%	19%	0%	97%
Screw-in Bulbs (piggyback)	National Grid	22%	19%	0%	97%
Thermostats, Electric	National Grid	11%	0%	0%	89%
Multi-Fa	amily Retrofit				
Air Sealing (FF)	National Grid	3%	0%	0%	97%
CFL (Electric)	National Grid	3%	0%	0%	97%
CFL (Non-Electric)	National Grid	3%	0%	0%	97%
Common Area Int Fixtures	National Grid	3%	0%	0%	97%
Common Area Occupancy Sensors	National Grid	3%	0%	0%	97%
DHW Measures (FF)	National Grid	3%	0%	0%	97%
DHW Measures (Electric)	National Grid	3%	0%	0%	97%
DHW Showerheads/Aerators (Electric)	National Grid	3%	0%	0%	97%
DHW Showerheads/Aerators (Non-Electric)	National Grid	3%	0%	0%	97%
DHW Tank/Pipe Wrap (Electric)	National Grid	3%	0%	0%	97%
DHW Tank/Pipe Wrap (Non-Electric)	National Grid	3%	0%	0%	97%
Fixtures (Electric)	National Grid	3%	0%	0%	97%
Fixtures (Non-Electric)	National Grid	3%	0%	0%	97%
Heat Pump Tune-Up (Electric)	National Grid	3%	0%	0%	97%
Indoor Fixture	National Grid	8%	4%	0%	96%
Insulation (Electric)	National Grid	3%	0%	0%	97%
Insulation (FF)	National Grid	3%	0%	0%	97%
Outdoor Fixture	National Grid	12%	7%	0%	95%
Programmable Thermostats (Electric)	National Grid	3%	0%	0%	97%
Programmable Thermostats (FF)	National Grid	3%	0%	0%	97%
Refrigerator (ES Value)	National Grid	3%	0%	0%	97%
Refrigerator (Retirement Value)	National Grid	3%	0%	0%	97%
Refrigerators/Freezers (Electric Heat)	National Grid	3%	0%	0%	97%
Refrigerators/Freezers (Non-Electric Heat)	National Grid	3%	0%	0%	97%
Room AC	National Grid	35%	0%	0%	65%
Room AC	National Grid	35%	0%	0%	65%
Screw-in Bulbs	National Grid	3%	0%	0%	97%
Smart Strips	National Grid	0%	0%	0%	100%
SPACE Air Sealing (Electric)	National Grid	3%	0%	0%	97%
SPACE Air Sealing (Non-Electric)	National Grid	3%	0%	0%	97%
SPACE Insulation (Electric)	National Grid	3%	0%	0%	97%
SPACE Insulation (Non-Electric)	National Grid	3%	0%	0%	97%
SPACE Thermostats (Electric)	National Grid	3%	0%	0%	97%
SPACE Thermostats (Non-Electric)	National Grid	3%	0%	0%	97%
· · · · ·	ER Program	- /-	- /-		
CUSTSERV	National Grid	0%	0%	0%	100%
	STAR Lighting				
Indoor Fixture	National Grid	8%	4%	0%	96%
LED Fixture	National Grid	0%	0%	0%	100%
		0,0	0,0	570	10070

LED Lamp	National Grid	0%	0%	0%	100%
Outdoor Fixture	National Grid	12%	7%	0%	95%
Screw-in Bulbs [*]	National Grid	57%	0%	0%	43%
Screw-in Bulbs (Hard to Reach) [*]	National Grid	40%	0%	0%	60%
Screw-in Bulbs (School Fundraiser)*	National Grid	0%	0%	0%	100%
Screw-in Bulbs (Specialty bulbs)*	National Grid	40%	0%	0%	60%
Torchiere	National Grid	6%	3%	0%	97%
ENERGY STAR A	ppliances			•	
Computer Monitors	National Grid	0%	0%	0%	100%
Freezer Rebate	National Grid	0%	0%	0%	100%
LCD/TV	National Grid	0%	0%	0%	100%
PC Computers	National Grid	0%	0%	0%	100%
Pool Pumps	National Grid	0%	0%	0%	100%
Ref Frz Recycling	National Grid	0%	0%	0%	67%
Refrigerator Rebate	National Grid	0%	0%	0%	100%
Room AC (Upstream)	National Grid	35%	0%	0%	65%
Room AC (Upstream)	National Grid	35%	0%	0%	65%
Room Air Cleaner	National Grid	0%	0%	0%	100%
Smart Strips	National Grid	0%	0%	0%	100%
Low-Income Residential N	New Construction				
ENERGY STAR Appliances – Refrigerators	National Grid	0%	0%	0%	100%
ENERGY STAR Homes – Heating, Cooling, and Water Heat Savings	National Grid	0%	0%	0%	100%
ENERGY STAR Homes – Heating, Cooling, and Water Heat Savings	National Grid	0%	0%	0%	100%
ENERGY STAR Homes – Heating, Cooling, and Water Heat Savings	National Grid	0%	0%	0%	100%
ENERGY STAR Lighting – Indoor Fixtures	National Grid	0%	0%	0%	100%
ENERGY STAR Lighting – Light–Emitting Diode Lights	National Grid	0%	0%	0%	100%
ENERGY STAR® CFL Lamps	National Grid	0%	0%	0%	100%
ENERGY STAR® Dishwashers	National Grid	0%	0%	0%	100%
Low-Income 1-4 Fan	nily Retrofit				
ENERGY STAR Appliances – Dehumidifiers	National Grid	0%	0%	0%	100%
ENERGY STAR Appliances – Dehumidifiers	National Grid	0%	0%	0%	100%
Low Income – Appliance Removal	National Grid	0%	0%	0%	100%
Low Income – Basic Educational Measures	National Grid	0%	0%	0%	100%
Low Income – DHW Measures (Electric)	National Grid	0%	0%	0%	100%
Low Income – Electric Weatherization	National Grid	0%	0%	0%	100%
Low Income – ENERGY STAR® CFL Bulbs	National Grid	0%	0%	0%	100%
Low Income – Freezers	National Grid	0%	0%	0%	100%
Low Income – Heating System Replacement (Oil)	National Grid	0%	0%	0%	100%
Low Income – Oil and Gas DHW Measures (Oil and Gas)	National Grid	0%	0%	0%	100%
Low Income – Oil and Gas DHW Measures (Oil and Gas)	National Grid	0%	0%	0%	100%
Low Income – Oil Weatherization	National Grid	0%	0%	0%	100%
Low Income – Refrigerators	National Grid	0%	0%	0%	100%

Low Income – Torchieres	National Grid	0%	0%	0%	100%
Low Income – Waterbed Mattress Replacement	National Grid	0%	0%	0%	100%
Low Income – Window AC Replacement	National Grid	0%	0%	0%	100%
Low-Income Multi	Family Retrofit				
ENERGY STAR Appliances – Smart Strips	National Grid	0%	0%	0%	100%
ENERGY STAR® Refrigerators (Retrofit)	National Grid	0%	0%	0%	100%
ENERGY STAR® Refrigerators (Retrofit)	National Grid	0%	0%	0%	100%
Low Income – Basic Educational Measures	National Grid	0%	0%	0%	100%
Low Income – DHW Measures (Electric)	National Grid	0%	0%	0%	100%
Low Income – Electric Weatherization	National Grid	0%	0%	0%	100%
Low Income – ENERGY STAR® CFL Bulbs	National Grid	0%	0%	0%	100%
Low Income – ENERGY STAR® CFL Fixtures	National Grid	0%	0%	0%	100%
Low Income – Freezers	National Grid	0%	0%	0%	100%
Low Income – Heating System Replacement (Oil)	National Grid	0%	0%	0%	100%
Low Income – Torchieres	National Grid	0%	0%	0%	100%
Low Income – Waterbed Mattress Replacement	National Grid	0%	0%	0%	100%
Low Income – Window AC Replacement	National Grid	0%	0%	0%	100%
Multifamily – Air Sealing	National Grid	0%	0%	0%	100%
Multifamily – Air Sealing	National Grid	0%	0%	0%	100%
Multifamily – DHW (Showerheads and Aerators)	National Grid	0%	0%	0%	100%
Multifamily – DHW (Showerheads and Aerators)	National Grid	0%	0%	0%	100%
Multifamily – DHW (Tank and Pipe Wrap)	National Grid	0%	0%	0%	100%
Multifamily – DHW (Tank and Pipe Wrap)	National Grid	0%	0%	0%	100%
Multifamily – Fixtures and CFLs	National Grid	0%	0%	0%	100%
Multifamily – Fixtures and CFLs	National Grid	0%	0%	0%	100%
Multifamily – Fixtures and CFLs	National Grid	0%	0%	0%	100%
Multifamily – Fixtures and CFLs	National Grid	0%	0%	0%	100%
Multifamily – Heat Pump Tune-Up	National Grid	3%	0%	0%	97%
Multifamily – Insulation (Walls, Roof, Floor)	National Grid	0%	0%	0%	100%
Multifamily – Insulation (Walls, Roof, Floor)	National Grid	0%	0%	0%	100%
Multifamily – Refrigerators and Freezers	National Grid	0%	0%	0%	100%
Multifamily – Refrigerators and Freezers	National Grid	0%	0%	0%	100%
Multifamily – Thermostats	National Grid	0%	0%	0%	100%
Multifamily – Thermostats	National Grid	0%	0%	0%	100%

* The Net-to-Gross factors for Residential Lighting CFL measures are accounted for in the In Service Rate factor.

EVALUATIONS

- ENERGY STAR® Lighting: Impact Evaluation for MA, RI, and VT Residential Lighting Program Study, 2004 and the Massachusetts Energy Star Lighting Evaluation.⁵⁰³
- MassSAVE: National Grid bases the NTG factors on the Multi Year Evaluation of the MA Home Energy Service Program, Process Evaluation Summary Report, 2004 and the 2010 Net-to-Gross Home Energy Assessment Report.⁵⁰⁴

⁵⁰³ NMR (2011). *Massachusetts ENERGY STAR* [®] *Lighting Program: 2010 Annual Report.* Prepared for Massachusetts Energy Efficiency Program Administrators and Massachusetts Energy Efficiency Advisory Council. Study 8 in the 2010 Massachusetts Electric Energy Efficiency Annual Report.

Commercial Electric Effi	ciency Measur	es			
Measure	PA	FR	SOP	SO _{NP}	NTG
C&I New Construction and	Major Renovation	1			
Advanced Lighting Design (Performance Lighting)	National Grid	16%	29%	0%	113%
Lighting Controls	National Grid	33%	29%	0%	96%
Lighting Systems	National Grid	33%	29%	0%	96%
Demand Control Ventilation (DCV)	National Grid	26%	2%	0%	75%
Dual Enthalpy Economizer Controls (DEEC)	National Grid	26%	2%	0%	75%
ECM Fan Motors	National Grid	26%	2%	0%	75%
HE Chiller	National Grid	26%	2%	0%	75%
Single-Package and SS Heat Pump Systems	National Grid	29%	2%	0%	73%
Single-Package and SS Unitary air conditioners	National Grid	29%	2%	0%	73%
HE Air Compressor	National Grid	32%	0%	2%	70%
Refrigerated Air Dryers	National Grid	32%	0%	2%	70%
Premium Efficiency Motors (Failed/Stock)	National Grid	11%	0%	8%	97%
Premium Efficiency Motors (New)	National Grid	14%	3%	8%	97%
Variable Frequency Drives	National Grid	25%	0%	8%	82%
Custom	National Grid	16%	29%	0%	113%
C&I Large Ret	trofit	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Lighting Controls	National Grid	17%	13%	0%	96%
Lighting Systems	National Grid	17%	13%	0%	96%
Energy Management System (EMS)	National Grid	11%	4%	0%	93%
Hotel Occupancy Sensors	National Grid	11%	4%	0%	93%
Vending Machine and Cooler Controls	National Grid	11%	4%	0%	93%
HE Air Compressor	National Grid	23%	0%	2%	78%
Variable Frequency Drives	National Grid	10%	7%	8%	104%
Custom	National Grid	14%	8%	1%	95%
C&I Small Ret	rofit				
Lighting Controls	National Grid	5%	1%	0%	96%
Lighting Systems	National Grid	5%	1%	0%	96%
Programmable Thermostats	National Grid	2%	2%	0%	100%
Case Motor Replacement	National Grid	2%	2%	0%	100%
Cooler Night Covers	National Grid	2%	2%	0%	100%
Cooler/Freezer Door Heater Control	National Grid	2%	2%	0%	100%
Cooler/Freezer Evaporator Fan Controls	National Grid	2%	2%	0%	100%
ECM for Evaporator Fans in Walk-in Coolers and Freezers	National Grid	2%	2%	0%	100%
Electronic Defrost Control	National Grid	2%	2%	0%	100%
LEDs in Freezers/Coolers	National Grid	2%	2%	0%	100%
Novelty Cooler Shutoff	National Grid	2%	2%	0%	100%

EVALUATIONS

All factors are from the Massachusetts C&I Electric Net-to-Gross Study.⁵⁰⁵

 ⁵⁰⁴ Cadmus (2011). 2010 Net-to-Gross Findings: Home Energy Assessment. The Electric and Gas Program Administrators of Massachusetts. Study 6 in the 2010 Massachusetts Electric Energy Efficiency Annual Report.
 ⁵⁰⁵ Tetra Tech, Inc. (2011). 2010 Commercial and Industrial Electric Programs Free-ridership and Spillover Study. The Electric

⁵⁰⁵ Tetra Tech, Inc. (2011). 2010 Commercial and Industrial Electric Programs Free-ridership and Spillover Study. The Electric and Gas Program Administrators of Massachusetts. Study 30 in the 2010 Massachusetts Electric Energy Efficiency Annual Report.

Residential Natural Gas Measures						
Measure	PA	FR	SOP	SO _{NP}	NTG	
Residential New Construction & Major Renovation						
Refrigerators	National Grid	0%	0%	0%	100%	
ES Homes - Cooling	National Grid	0%	0%	0%	100%	
ES Homes - Heating	National Grid	0%	0%	0%	100%	
ES Homes - Water Heating	National Grid	0%	0%	0%	100%	
Indoor Fixture	National Grid	0%	0%	0%	100%	
LED Fixture	National Grid	0%	0%	0%	100%	
Screw-in Bulbs	National Grid	0%	0%	0%	100%	
Clothes Washers	National Grid	0%	0%	0%	100%	
Dishwashers	National Grid	0%	0%	0%	100%	
Residential Heating and Water Heating						
Boiler (AFUE >= 85%)	National Grid	69%	14%	0%	45%	
Boiler (AFUE $\geq 90\%$)	National Grid	60%	14%	0%	54%	
Boiler Reset Controls	National Grid	0%	0%	0%	100%	
Condensing Water Heater	National Grid	37%	0%	0%	63%	
Early Replacement Boiler (Retirement Value)	National Grid	0%	0%	0%	100%	
Early Replacement Boiler (HE Value)	National Grid	0%	0%	0%	100%	
ES Programmable Thermostats	National Grid	58%	0%	0%	42%	
Furnace w/ ECM (AFUE = 92%)	National Grid	62%	19%	0%	57%	
Furnace w/ ECM (AFUE = 94%)	National Grid	62%	19%	0%	57%	
Heat Recovery Ventilator	National Grid	0%	0%	0%	100%	
Indirect Water Heater	National Grid	66%	0%	0%	34%	
Integrated water heater/condensing boiler	National Grid	60%	14%	0%	54%	
Integrated water heater/non-condensing boiler	National Grid	69%	14%	0%	45%	
Stand Alone Storage Water Heater ($EF \ge 0.62$)	National Grid	37%	0%	0%	63%	
Tankless Water Heaters (EF ≥ 0.82)	National Grid	63%	0%	0%	37%	
OPOWER	Program					
CUSTSERVNational Grid0%0%100%					100%	

EVALUATIONS

All NTG factors are set to 100% based on no completed evaluations, unless noted otherwise below.

• Residential Heating and Water Heating: Free-ridership rates are based on the results of the 2011 impact evaluation for measures that were included in that study. ⁵⁰⁶ The hard-to-reach (HTR) version of each of these measures has assumed free-ridership rates set to 1/3 the value of the non-HTR measure.⁵⁰⁷

⁵⁰⁶ Nexus Market Research (2011). Estimated Net-To-Gross (NTG) Factors for the Massachusetts Program Administrators (PAs) 2010 Residential New Construction Programs, Residential HEHE and Multi-Family Gas Programs, and Commercial and Industrial Gas Programs. Prepared for Massachusetts Program Administrators and the Energy Efficiency Advisory Council. Study 11 in the 2010 Massachusetts Electric Energy Efficiency Annual Report. ⁵⁰⁷ Massachusetts Common Assumption.

Commercial Natural Gas Efficiency Measures					
TRM Measure Group	РА	FR	SOP	SO _{NP}	NTG
C&I New Construction &	Major Renovatio)n		•	
Commercial Fryers	National Grid	17%	0%	0%	83%
HE Gas Griddle	National Grid	17%	0%	0%	83%
HE Gas Combination Oven (>=40%)	National Grid	17%	0%	0%	83%
HE Gas Convection Oven (>=40%)	National Grid	17%	0%	0%	83%
HE Gas Conveyor Oven (>=40%)	National Grid	17%	0%	0%	83%
HE Gas Rack Oven (>=50%)	National Grid	17%	0%	0%	83%
HE Gas Steamer	National Grid	17%	0%	0%	83%
Condensing Stand-Alone Water Heater	National Grid	17%	0%	0%	83%
HE Indirect Water Heater	National Grid	17%	0%	0%	83%
Tankless Water Heater	National Grid	17%	0%	0%	83%
Condensing Unit Heaters	National Grid	17%	0%	0%	83%
Infrared Heaters	National Grid	17%	0%	0%	83%
HE Gas Boiler	National Grid	17%	0%	0%	83%
Furnace (AFUE $\geq 92\%$)	National Grid	17%	0%	0%	83%
Furnace (AFUE >= 92%) w/ECM	National Grid	17%	0%	0%	83%
Furnace (AFUE >= 94%) w/ECM	National Grid	17%	0%	0%	83%
Integrated Water Heater/Condensing Boiler (0.86 EF, 0.85 AFUE)	National Grid	17%	0%	0%	83%
Integrated Water Heater/Condensing Boiler (0.86 EF, 0.90 AFUE)	National Grid	17%	0%	0%	83%
Free Standing Water Heater	National Grid	17%	0%	0%	83%
C&I Retr					
Pre-Rinse Spray Valve	National Grid	17%	0%	0%	83%
Steam Traps	National Grid	17%	0%	0%	83%
Boiler Reset Controls	National Grid	17%	0%	0%	83%
ES Programmable Thermostats	National Grid	17%	0%	0%	83%
C&I Direct	Install				
Faucet Aerators	National Grid	17%	0%	0%	83%
Low Flow Shower Heads	National Grid	17%	0%	0%	83%
Pre-Rinse Spray Valve	National Grid	17%	0%	0%	83%
Boiler Reset Controls	National Grid	17%	0%	0%	83%
ES Programmable Thermostats	National Grid	17%	0%	0%	83%

EVALUATIONS

All factors are from the Massachusetts C&I Gas Net-to-Gross Study.⁵⁰⁸

⁵⁰⁸ NMR (2011). Estimated Net-To-Gross (NTG) Factors for the Massachusetts Program Administrators (PAs) 2010 Residential New Construction Programs, Residential HEHE and Multi-Family Gas Programs, and Commercial and Industrial Gas Programs. Prepared for Massachusetts Program Administrators and Energy Efficiency Advisory Council. Study 11 in the 2010 Massachusetts Electric Energy Efficiency Annual Report.

Appendix C: Acronyms

ACRONYM	DESCRIPTION
AC	Air Conditioning
AFUE	Annual Fuel Utilization Efficiency (see the Glossary)
AHU	Air Handling Unit
Btu	British Thermal Unit (see the Glossary)
CF	Coincidence Factor (see the Glossary)
CFL	Compact Fluorescent Lamp
CHP	Combined Heat and Power
COP	Coefficient of Performance (see the Glossary)
DCV	Demand Controlled Ventillation
DHW	Domestic Hot Water
DOER	Department of Energy Resources
DSM	Demand Side Management (see the Glossary)
ECM	Electrically Commutated Motor
EER	Energy Efficiency Ratio (see the Glossary)
EF	Efficiency Factor
EFLH	Equivalent Full Load Hours (see the Glossary)
ES	ENERGY STAR® (see the Glossary)
FCM	Forward Capacity Market
FR	Free-Ridership (see the Glossary)
HE	High-Efficiency
HID	High-Intensity Discharge (a lighting technology)
HP	Horse Power (see the Glossary)
HSPF	Heating Seasonal Performance Factor (see the Glossary)
HVAC	Heating, Ventilating, and Air Conditioning
ISO	Independent System Operator
ISR	In-Service Rate (see the Glossary)
kW	Kilo-Watt, a unit of electric demand equal to 1,000 watts
kWh	Kilowatt-Hour, a unit of energy (1 kilowatt of power supplied for one hour)
LED	Light-Emitting Diode (one type of solid-state lighting)
LCD	Liquid Crystal Display (a technology used for computer monitors and similar displays)
MMBtu	One million British Thermal Units (see "Btu" in the Glossary)
MW	Megawatt – a measure of electric demand equal to 1,000 kilowatts
MWh	Megawatt-hour – a measure of energy equal to 1,000 kilowatt-hours
NEB	Non-Electric Benefit (see the Glossary)
NEI	Non-Energy Impact
NE-ISO	New England Independent System Operator
NTG	Net-to-Gross (see the Glossary)
O&M	Operations and Maintenance
PA	Program Administrator (see the Glossary)
PARIS	Planning And Reporting Information System (a DOER database - see the Glossary)
PC	Personal Computer
RR	Realization Rate (see the Glossary)
SEER	Seasonal Energy Efficiency Ratio (see the Glossary)
SO	Spillover (see the Glossary)
SPF	Savings Persistence Factor (see the Glossary)
SSL	Solid-State Lighting (e.g., LED lighting)
VSD	Variable-Speed Drive

Appendix D: Glossary

This glossary provides definitions as they are applied in this TRM for Massachusetts' energy efficiency programs. Alternate definitions may be used for some terms in other contexts.

TERM	DESCRIPTION
Adjusted Gross Savings	Gross savings (as calculated by the measure savings algorithms) that have been subsequently adjusted by the application of all impact factors except the net-to-gross factors (free-ridership and spillover). For more detail, see the section on Impact Factors for Calculating Adjusted Gross and Net Savings.
AFUE	Annual Fuel Utilization Efficiency. The measure of seasonal or annual efficiency of a furnace or boiler. AFUE takes into account the cyclic on/off operation and associated energy losses of the heating unit as it responds to changes in the load, which in turn is affected by changes in weather and occupant controls.
Baseline Efficiency	The level of efficiency of the equipment that would have been installed without any influence from the program or, for retrofit cases where site-specific information is available, the actual efficiency of the existing equipment.
Btu	British thermal unit. A Btu is approximately the amount of energy needed to heat one pound of water by one degree Fahrenheit.
Coefficient of Performance (COP)	Coefficient of Performance is a measure of the efficiency of a heat pump, air conditioner, or refrigeration system. A COP value is given as the Btu output of a device divided by the Btu input of the device. The input and output are determined at AHRI testing standards conditions designed to reflect peak load operation.
Coincidence Factor (CF)	Coincidence Factors represent the fraction of connected load expected to occur concurrent to a particular system peak period; separate CF are found for summer and winter peaks. The CF given in the TRM includes both coincidence and diversity factors multiplied into one number. Coincidence factors are provided for peak periods defined by the NE-ISO for FCM purposes and calculated consistent with the FCM methodology.
Connected Load kW Savings	The connected load kW savings is the power saved by the equipment while in use. In some cases the savings reflect the maximum power draw of equipment at full load. In other cases the connected load may be variable, which must be accounted for in the savings algorithm.
Deemed Savings	Savings values (electric, fossil fuel and/or non-energy benefits) determined from savings algorithms with assumed values for all algorithm parameters. Alternatively, deemed savings values may be determined from evaluation studies. A measure with deemed savings will have the same savings per unit since all measure assumptions are the same. Deemed savings are used by program administrators to report savings for measures with well-defined performance characteristics relative to baseline efficiency cases. Deemed savings can simplify program planning and design, but may lead to over- or under-estimation of savings depending on product performance.
Deemed Calculated Savings	Savings values (electric, fossil fuel and/or non-energy benefits) that depend on a standard savings algorithm and for which at least one of the algorithm parameters (e.g., hours of operation) is project specific.
Demand Savings	The reduction in demand due to installation of an energy efficiency measure, usually expressed as kW and measured at the customer's meter (see Connected Load kW Savings).
Demand Side Management (DSM)	Strategies used to manage energy demand including energy efficiency, load management, fuel substitution, and load building.
Diversity	A characteristic of a variety of electric loads whereby individual maximum demands occur at different times. For example, 50 efficient light fixtures may be installed, but they are not necessarily all on at the same time. See Coincidence Factor.

TERM	DESCRIPTION		
Diversity Factor	This TRM uses coincidence factors that incorporate diversity (See Coincidence Factor), thus this TRM has no separate diversity factors. A diversity factor is typically calculated as: 1) the percent of maximum demand savings from energy efficiency measures available at the time of the company's peak demand, or 2) the ratio of the sum of the demands of a group of users to their coincident maximum demand.		
End Use	Refers to the category of end use or service provided by a measure or technology (e.g., lighting, cooling, etc.). For the purpose of this manual, end uses with their PARIS codes include:ALghtLightingHEUBeBehaviorHVACHVACIenvlInsulation & Air SealingCMoDrMotors & DrivesJGchpCombined Heat & PowerDRefrRefrigerationKSdhwSolar Hot WaterEHoWaHot WaterLDmdRDemand ResponseFComACompressed AirMPvElPhotovoltaic PanelsGProcProcess*"For residential measures, "process" is used for products that have low savings, such as consumer electronics, or do not conform to existing end use categories. For commercial and inductival measures, "process" is used for products that have response or process.		
	industrial measures, "process" is used for systematic improvements to manufacturing or pump systems, or efficient models of specialty equipment not covered in other end uses.		
Energy Efficiency Ratio (EER)	The Energy Efficiency Ratio is a measure of the efficiency of a cooling system at a specified peak, design temperature, or outdoor temperature. In technical terms, EER is the steady-state rate of heat energy removal (i.e. cooling capacity) of a product measured in Btuh output divided by watts input.		
ENERGY STAR® (ES)	Brand name for the voluntary energy efficiency labeling initiative sponsored by the U.S. Environmental Protection Agency.		
Energy Costing Period	 A period of relatively high or low system energy cost, by season. The energy periods defined by ISO-NE are: Summer Peak: 6am–10pm, Monday–Friday (except ISO holidays), June–September Summer Off-Peak: Summer hours not included in the summer peak hours: 10pm–6am, Monday–Friday, all day on Saturday and Sunday, and ISO holidays, June–September Winter Peak: 6am–10pm, Monday–Friday (except ISO holidays), January–May and October–December Winter Off-Peak: Winter hours not included in the sinter peak hours: 10pm–6am, Monday–Friday, all day on Saturday and Sunday, and ISO holidays, January–May and October–December 		
Equivalent Full Load Hours (EFLH)	The equivalent hours that equipment would need to operate at its peak capacity in order to consume its estimated annual kWh consumption (annual kWh/connected kW).		
Free Rider	A customer who participates in an energy efficiency program, but would have installed some or all of the same measure(s) on their own, with no change in timing of the installation, if the program had not been available.		
Free-Ridership Rate	The percentage of savings attributable to participants who would have installed the measures in the absence of program intervention.		
Gross kW	Expected demand reduction based on a comparison of standard or replaced equipment and equipment installed through an energy efficiency program.		
Gross kWh	Expected kWh reduction based on a comparison of standard or replaced equipment and equipment installed through an energy efficiency program.		

TERM	DESCRIPTION
Gross Savings	A saving estimate calculated from objective technical factors. In this TRM, "gross savings" are calculated with the measure algorithms and do not include any application of impact factors. Once impact factors are applied, the savings are called "Adjusted Gross Savings". For more detail, see the section on Impact Factors for Calculating Adjusted Gross and Net Savings.
High Efficiency (HE)	Refers to the efficiency measures that are installed and promoted by the energy efficiency programs.
Horsepower (HP)	A unit for measuring the rate of doing work. One horsepower equals about three-fourths of a kilowatt (745.7 watts).
Heating Seasonal Performance Factor (HSPF)	A measure of the seasonal heating mode efficiencies of heat pumps expressed as the ratio of the total heating output to the total seasonal input energy.
Impact Factor	Generic term for a value used to adjust the gross savings estimated by the savings algorithms in order to reflect the actual savings attributable to the efficiency program. In this TRM, impact factors include realization rates, in-service rates, savings persistence, peak demand coincidence factors, free-ridership, spillover and net-to-gross factors. See the section on Impact Factors for more detail.
In-Service Rate	The percentage of units that are actually installed. For example, efficient lamps may have an in-service rate less than 100% since some lamps are purchased as replacement units and are not immediately installed. The in-service rate for most measures is 100%.
Measure Life	The number of years that an efficiency measure is expected to garner savings. These are generally based on engineering lives, but sometimes adjusted based on observations of market conditions.
Lost Opportunity	Refers to a measure being installed at the time of planned investment in new equipment or systems. Often this reflects either new construction, renovation, remodeling, planned expansion or replacement, or replacement of failure.
Measure	A product (a piece of equipment), combination of products, or process designed to provide energy and/or demand savings. Measure can also refer to a service or a practice that provides savings. Measure can also refer to a specific combination of technology and market/customer/practice/strategy (e.g., direct install low income CFL).
Net Savings	The final value of savings that is attributable to a program or measure. Net savings differs from gross savings (or adjusted gross savings) because it includes adjustments due to free-ridership and/or spillover. Net savings is sometimes referred to as "verified" or "final" savings. For more detail see the section on Impact Factors for Calculating Adjusted Gross and Net Savings.
Net-to-Gross Ratio	The ratio of net savings to the adjusted gross savings (for a measure or program). The adjusted gross savings include any adjustment by the impact factors other than free-ridership or spillover. Net-to-gross is usually expressed as a percent.
Non-Electric Benefits (NEBs)	Quantifiable benefits (beyond electric savings) that are the result of the installation of a measure. Fossil fuel, water, and maintenance are examples of non-electric benefits. Non-electric benefits can be negative (i.e. increased maintenance or increased fossil fuel usage which results from a measure) and therefore are sometimes referred to as "non-electric impacts".
Non-Participant	A customer who is eligible to participate in a program, but does not. A non-participant may install a measure because of a program, but the installation of the measure is not through regular program channels; as a result, their actions are normally only detected through evaluations.
On-Peak kW	See Summer/Winter On-peak kW
Operating Hours	Hours that a piece of equipment is expected to be in operation, not necessarily at full load (typically expressed per year).

TERM	DESCRIPTION
PARIS	Planning And Reporting Information System, a statewide database maintained by the Department of Energy Resources (DOER) that emulates the program administrators' screening model. As a repository for quantitative data from plans, preliminary reports, and reports, PARIS generates information that includes funding sources, customer profiles, program participation, costs, savings, cost-effectiveness and program impact factors from evaluation studies. DOER developed PARIS in 2003 as a collaborative effort with the Department of Public Utilities and the electric program administrators. Beginning with the 2010 plans, PARIS holds data from gas program administrators.
Participant	A customer who installs a measure through regular program channels and receives any benefit (i.e. incentive) that is available through the program because of their participation. Free-riders are a subset of this group.
Prescriptive Measure	A prescriptive measure is generally offered by use of a prescriptive form with a prescribed incentive based on the parameters of the efficient equipment or practice.
Program Administrator (PA)	Those entities that oversee public benefit funds in the implementation of energy efficiency programs. This generally includes regulated utilities, other organizations chosen to implement such programs, and state energy offices. The Massachusetts electric PAs include Cape Light Compact, National Grid, NSTAR, Western Massachusetts Electric Company (WMECO), and Unitil. The Massachusetts natural gas PAs include Berkshire Gas, Blackstone Gas Company, Columbia Gas of Massachusetts, National Grid, New England Gas Company, NSTAR, and Unitil.
Realization Rate (RR)	The ratio of measure savings developed from impact evaluations to the estimated measure savings derived from the TRM savings algorithms. This factor is used to adjust the estimated savings when significant justification for such adjustment exists. The components of the realization rate are described in detail in the section on Impact Factors.
Retrofit	The replacement of a piece of equipment or device before the end of its useful or planned life for the purpose of achieving energy savings. "Retrofit" measures are sometimes referred to as "early retirement" when the removal of the old equipment is aggressively pursued.
Savings Persistence Factor (SPF)	Percentage of first-year energy or demand savings expected to persist over the life of the installed energy efficiency equipment. The SPF is developed by conducting surveys of installed equipment several years after installation to determine the operational capability of the equipment. In contrast, <i>measure persistence</i> takes into account business turnover, early retirement of installed equipment, and other reasons the installed equipment might be removed or discontinued. Measure persistence is generally incorporated as part of the measure life, and therefore is not included as a separate impact factor.
Seasonal Energy Efficiency Ratio (SEER)	A measurement of the efficiency of a central air conditioner over an entire season. In technical terms, SEER is a measure of equipment the total cooling of a central air conditioner or heat pump (in Btu) during the normal cooling season as compared to the total electric energy input (in watt-hours) consumed during the same period.
Seasonal Peak kW	See Summer/Winter Seasonal Peak kW, and Summer/Winter On-Peak Peak kW.
Sector	A system for grouping customers with similar characteristics. For the purpose of this manual, the sectors are Commercial and Industrial (C&I), Small Business, Residential, and Low Income.
Spillover Rate	The percentage of savings attributable to the program, but additional to the gross (tracked) savings of a program. Spillover includes the effects of (a) participants in the program who install additional energy efficient measures outside of the program as a result of hearing about the program and (b) non-participants who install or influence the installation of energy efficient measures as a result of being aware of the program.
Summer/Winter On-Peak kW	The average demand reduction during the summer/winter on-peak period. The summer on- peak period is 1pm-5pm on non-holiday weekdays in June, July and August; the winter on- peak period is 5pm-7pm on non-holiday weekdays in December and January.

TERM	DESCRIPTION
Summer/Winter Seasonal Peak kW	The demand reduction occurring when the actual, real-time hourly load for Monday through Friday on non-holidays, during the months of June, July, August, December, and January, as determined by the ISO, is equal to or greater than 90% of the most recent 50/50 system peak load forecast, as determined by the ISO, for the applicable summer or winter season.
Ton	Unit of measure for determining cooling capacity. One ton equals 12,000 Btu.
Watt	A unit of electrical power. Equal to 1/1000 of a kilowatt.